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There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an 
existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model 
parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in 
the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the cur-
rent data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models 
are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value 
Decomposition (SVD) and Boltzmann Machines.
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Introduction

The estimation of Rasch measures from 
ordinal data has been exhaustively investigated 
for 40 years, but the accuracy of prediction of 
polytomous ratings from those measures has not 
attracted as much attention.

Georg Rasch (1961) proposes a multi-
dimensional logistic model for multinomial data. 
Erling Andersen (1977) implies that equidistant 
scoring of categories is required for the marginal 
scores to be sufficient statistics for measures to be 
located on the real line, i.e., to be unidimensional. 
Andrich (1977) makes this explicit by formulating 
a Rasch model for polytomous ordinal response 
categories. This was extended by Masters (1982) 
to model a different response structure for each 
test item, and the multinomial Rasch model con-
tinues to be yet further extended by numerous 
researchers (Rost, 2001).

But, given a dataset of polytomous data, 
which model best predicts future ratings?

The Basic Andrich Model

From a Rasch perspective, the simplest 
polytomous model is the Andrich (1978) model, 
expressed here in logit-linear form:

log (Pnij / Pni(j–1)) = Bn – Di – Fj	 (1)

where Pnij is the probability that person n encoun-
tering item i is observed in category j of a set of 
ordered response categories j = s + 1, s + m. 
So that the rating scale categories are numbered 
s, s + m, a consecutive ascending sequence of 
ordinal numbers. For algebraic convenience, 
s = 0 here.

Pni(j–1) 	 is the probability that person n 
encountering item i is observed in 
category j–1.

Bn	 is the ability of person n.
Di 	 is the difficulty of item i.
Fj 	 is the Rasch-Andrich threshold lo-

cated at the point of equal probability 
of categories j–1 and j. The set of 
{Fj} is termed here the “rating scale 
structure”. 

It is conventional to set S{Fj} = 0 for j = 
1, m, so that the item difficulty is the point on the 
latent variable at which the lowest and highest 
categories are modeled to be equally probable. In 
manipulating (1), the term F0 may arise. This can 
be set to F0 = 0 or any convenient value, because 
it cancels out algebraically. The {Fj} are modeled 
to be as independent as possible of both the items 
and the persons. So they can be conceptualized as 
a rating-scale structure shared by all items, or as a 
response-style structure shared by all persons. 

The Andrich model is simple to express as 
Newton-Raphson estimation equations (Wright 
and Masters, 1982). Its estimates are relatively 
straightforward to communicate and utilize, so 
it would be beneficial if this model could be 
implemented for all data sets, but it cannot be, 
as we shall discuss. 

Category Widths

The depiction of category widths is central to 
communicating how the rating scale relates to the 
latent variable. Since the latent variable is infinite, 
the extreme categories, 0 and m, of the rating scale 
are always infinitely wide. For the intermediate 
categories, there are several ways of expressing 
their widths, depending on the purpose for which 
the width is being estimated. 

The {Fj} indicate the placements of the 
categories on the latent variable. The {Fj} 
themselves are the points of equal-probability of 
adjacent categories so, if the {Fj} are a series of 
ascending values, they indicate the modal region 
for each category and so the ends of the modal 
intervals, {Mj}, on the latent variable for which 
each category is more probable to be observed 
than any other category. When the {Fj} exhibit 
disorder, then some categories will not be modal, 
and so the {Mj} will differ from the {Fj} and not 
depict all categories. Segmenting the latent vari-
able into modal category intervals is useful for 
inference, but requires careful communication. 
When the non-specialist is told “category x is the 
most probable category,” this statement may be 
understood to mean “category x is more probable 
than all other categories combined”. But this may 
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not be the case. In fact, the highest probability of 
a modal intermediate “most probable” category of 
a 4-category rating scale may be p = 0.3 or less. 

The highest probability of the extreme cat-
egories of a rating scale is always modeled to be 
1.0 at the infinite extremes of the latent variable. 
This is an extrapolation beyond the data that can 
be misleading for inference. It implies that the 
rating scale definitely functions in that manner at 
its extremes. However, an extreme category may 
have only a few observations, and those observa-
tions may provide scant evidence of its function-
ing. An example of such a rating scale is “Excel-
lent, Good, Acceptable, Needs improvement.” 
A rater could perceive “Needs improvement” to 
be the appropriate category for a “Good”-rated 
performance by a star performer who should be 
in the “Excellent” category. Category-level fit sta-
tistics could flag this problem, but they are rarely 
provided to the end-user of an instrument.

The end-user may wish to compare perfor-
mance on an item to a criterion level on the rat-
ing scale. Is the performance “above or below a 
category threshold” or would we predict it to be? 
The most direct way to answer this is to concep-
tualize the width of the intermediate categories 
on the latent variable in terms of Rasch-Thurstone 
thresholds, the points of equal cumulative cat-
egory probability above and below the threshold. 
Thus, at Rasch-Thurstone threshold Tt relative to 
Di, where the person ability is Bt,

0 1

0.5 .
j m

tik tik
k k j

P P
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= =å å 	 (2)

Expressing the Andrich model in terms of 
Rasch-Thurstone thresholds is awkward. For in-
stance, consider a three-category rating scale with 
Rasch-Andrich thresholds, F1 and F2 and with the 
conventional constraints so that F1 = –F2. Then 
the equivalent Rasch-Thurstone thresholds are T1 
and T2, so that T1 = –T2, and T1 is given by

( )

( )
1 0 1

2 1
1

log

log 1 .
ni ni n i

T
n i i

P P B D F

B D D T e

= - -

= - - - + - 	(3)

It is seen that the T1 and Tm, the extreme thresh-
olds, are always more extreme than F1 and Fm, 

and that the {Tj} are always ascending or equal in 
value, unlike the {Fj} which can be disordered. 

In another conceptualization of category 
widths, it is the “average” performance on the 
rating scale that is of interest. “What is the 
predicted average rating on the rating scale of a 
person of such-and-such ability?” To answer, this, 
let us also express the Andrich model in terms of 
Rasch-half-point thresholds {Hh}, where h = 1,m. 
The {Hh} are the points at which the expected 
item score on the model item characteristic curve 
(ICC) is {h – 0.5}. Then, if Bh is the person ability 
at point Hh relative to item difficulty Di,
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It is seen that the rating-score interval h – 0.5 
to (h + 1) – 0.5 contains performances which 
average within half a score-point of the category 
value, h. Since only discrete category values can 
be observed, performances in this interval can 
be considered to round to the category value, h. 
Thus Hh to Hh+1 is the category interval on the 
latent variable for category h according to this 
conceptualization. The {Hj} are always strictly 
ascending in value. This formulation has proven 
effective for communicating rating scale func-
tioning because it can be explained with only one 
curve, the ICC. Its explanation can be presented 
in frequentist terms: “If there were 1,000 people 
at this point on the latent variable there average 
performance would be in the region of category 
h.” This one-curve explanation contrasts with the 
set of probability curves required to explain the 
Rasch-Andrich and Rasch-Thurstone Thresholds. 
For non-technical audiences, understanding inter-
actions between curves can prove daunting.

For our 3-category rating scale, 
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It is seen that H1 and Hm must be yet more extreme 
than T1 and Tm.

The relationship between these three sets of 
thresholds, {Mj}, {Tj}, {Hj}, is shown in Figure 
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1 for the “Liking for Science” data (Wright and 
Masters, 1982).

Structural Considerations in Rating Prediction

Items on a test instrument may not share the 
same rating scale structure. Most conspicuously, 
items may have different numbers of response 
categories, for instance, 3 categories, yes – may 
be – no, or 4 categories, never – sometimes – often 
– always. Modeling items in groups according to 
the lengths of their rating scales addresses this: 

( )( 1)log ,ngj ng j n gi gjP P B D F- = - - 	 (6)

where g indicates the group of items sharing the 
same rating-scale length, so that in group g, the 
categories range from 0 to mg.

Items may share the same number of cat-
egories, but the categories themselves may have 
different meanings. Accordingly the grouping 
may also be particularized to groups of items con-
sidered to share the same substantive rating scale. 
At their most diverse, each item may become its 
own group, so that each item is modeled to with a 

unique rating scale structure. This is the Masters 
(1982) Partial Credit model, originally intended 
for giving partial credit when partially-correct 
distractors are selected in response to multiple-
choice questions. Here is Masters’ Partial Credit 
model: 

( )( 1)log

,
nij ni j n i ij

n ij

P P B D F

B D
- = - -

= - 	 (7)

where Dij is the Rasch-Andrich threshold j for 
item i relative to the latent variable.

Similarly, each person can be model to have 
a unique perception of a supposedly shared rat-
ing scale. Ben Wright called this the person-style 
model: 

( )( 1)log

,
nij ni j n i nj

nj i

P P B D F

B D
- = - -

= - 	 (8)

Many rating scales can be conceptualized 
as progressive. To be observed in category 2, the 
person must have succeeded on category 1. This 
suggests that such a scale should produce better 
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fit to a model with those characteristics. Such a 
model is the Steps-success model (Verhelst et al., 
1997) which has been implemented in software 
since 1991 (Glas and Verhelst, 1991). The model 
can be written:

( 1)log .
m

nik ni j n i ij
k j

P P B D F-
=

é ù
ê ú = - -ê ú
ë û
å 	 (9)

It is seen that the category threshold is the 
log-odds of passing the threshold, i.e., being 
observed in a category at or above the threshold, 
and of failing the threshold, i.e., being observed 
in the category immediately below the threshold. 
This model suggests a Steps-failure (Linacre, 
1991) model for rating scales modeling degrad-
ing performance. Here, being observed in a lower 
category implies lack of success in the category 
above it: 

1
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But which of these models matches the 
content of the rating scale? Consider the 7-level 
Functional Independence Scale (FIM®), used 
for rating medical patients during rehabilitation. 
Its 7 levels are shown in Table 1. Is this a scale 
in which the observed Level is reached from the 
full set of levels presented simultaneously in ac-
cordance with the Andrich model? Or is the Level 
reached by a process of increasing ability upwards 
from Total Assist in accord with the Steps-success 
model? Or is the Level reached by decreasing 
ability downwards from Complete independence 
in accord with the Steps-failure model? There 
is no clear-cut answer, and this ambiguity has 
proved pervasive in practice. Consequently, even 

for apparently strongly developmental scales, 
the Andrich rating scale has proved an effective 
model.

Fit Considerations

The statistical tradition is to select the model 
which best fits the data. An obvious approach is to 
compare the chi-square statistics of models with 
different numbers of estimated parameters. If the 
addition of a parameter reduces the chi-square 
by more than one unit, then the model is better 
fitting, but this tends to produce better-fitting 
models with many more parameters but only a 
small improvement in overall fit. This has moti-
vated model comparison by means of the Akaike 
Information Criterion (AIC, Akaike, 1973) but, 
so far, this has not been reported in the Rasch 
literature as a notably successful approach to 
improving prediction.

Utility and Communication Considerations

Rasch analysis constructs linear measures. 
Producing a precise numerical summary of the 
current data set is important, but less so than pro-
ducing a summary whose numbers have special 
properties. All the numbers we encounter in our 
day-to-day lives are linear, when considered only 
as numbers, but most numbers are not linear in 
their meanings. Rasch measures are numbers that 
are linear in meaning. This makes them useful in 
ways that other numbers are not. For instance, 
linear numbers are what most statistical methods 
expect.

The linearity of Rasch measures also makes 
them excellent for communicating findings. But 
this communication is undermined when there are 
too many numbers, or the numbers are too frag-
mented. A non-technical audience can understand 
one number per person and one number per item 
and one curve per rating scale, but when these 
multiply confusion soon reigns. For instance, for 
an instrument with a standard Likert 5-category 
rating scale, the audience expects to see one 
description of the relationship of the categories. 
It is disconcerting to be shown slightly different 
Partial Credit representations of the rating scale 
for each item on the instrument. If the rating scale 

Table 1
Functional Independence Measure, FIM®

Rating Scale Level

7: Complete independence
6: Modified independence
5: Supervision
4: Minimal assist
3: Moderate assist
2: Maximal assist
1: Total assist
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functioning for one item is noticeably different, 
then there is probably a mismatch between the 
item stem and the rating scale. For instance, the 
item stem may be asking a true-false question, 
but the rating scale is asking for degree of agree-
ment. In this case, the item can be separated out 
for special attention, but, in communicating the 
instrument, it is probably better if such items are 
omitted entirely.

Predicting Future Responses

The previous considerations in model selec-
tion are well established in Rasch practice. They 
are always based on the analysis and reporting 
of currently existing data. But a new situation 
has arisen in which it is the prediction of future 
responses, yet to be collected, that is the para-
mount consideration. A fundamental assumption 
of much of statistics is that the model which best, 
or most usefully, fits the current data will also 
be the most successful at predicting future data. 
And this is true, up to a point. That point is when 
the model starts to over-fit the current data. If the 
model fits the current data too well, predicting 
too accurately its idiosyncratic aspects, then that 
model will fit future data less well because there 
will be different idiosyncratic aspects. But when 
has overfit occurred? In practice this can only be 
discovered by analyzing new data.

It is to be expected that each new dataset 
will produce slightly different estimates of the 
parameters, and so slightly different predictions 
about responses. These new estimates are gener-
ally expected to fluctuate around the previous 
estimates in a distribution described in some 
way by the probabilistic form of the model and 
the standard errors of measurement. Of course, 
there are always unmodeled sources of variance, 
so we are not surprised if the new estimates are 
somewhat more dispersed from their expectations 
than Rasch theory predicts. If the dispersion be-
comes too large, we start looking for item drift, 
differential item functioning, and other effects, 
but nearly always retrospectively. We rarely try 
to predict these in advance and to build them into 
our response predictions for future data.

The Netflix Prize

In October 2006, Netflix Inc. offered a one 
million dollar challenge prize to the winner of a 
competition to improve on Netflix’s own method 
of predicting its customers’ ratings of movies. 
Netflix rent out movies on DVD and they have 
over 6 million customers. Their customers are 
allowed to rate any movie in the Netflix database, 
whether they have rented it or not, using a rating 
scale of one to five stars. Netflix want to predict 
what rating a customer would give a movie that 
the customer has yet to rent or rate. This is so that 
Netflix can recommend to each customer movies 
that the customer is expected to rate highly and 
to avoid recommending movies to which the 
customer would give a low rating.

Superficially, the Netflix Prize appears trivial. 
In a standard Rasch analysis, the customers are 
the “persons” and the movies are the “items.” 
The Rasch-Andrich measures of customers, 
movies and the rating scale structure supports 
the prediction of the rating of any movie by any 
customer. So, analyze the database of ratings 
with an Andrich model, and then recommend the 
most popular movies to everyone. The predic-
tion would be 5 stars! This works successfully, 
but soon everyone has seen those most popular 
movies, such as “Miss Congeniality.” In order to 
keep their business active, Netflix need to keep 
recommending further movies to their customers. 
For these recommendations, the personal likes 
and dislikes of each customer need to be taken 
into account.

The Prize competition centers on the submis-
sion to Netflix of a set of predicted ratings for 
which Netflix provide the customer and the movie 
identification but not the ratings themselves. The 
basis for those predictions is found in a dataset 
of 100,480,507 “Training” ratings by 480,189 
customers of 17,770 movies. Though the number 
of ratings is huge, it comprises only a little over 
1% of the possible ratings. The data matrix is 99% 
missing. The 2,817,131 “Qualifying” ratings to be 
predicted form part of these missing data. These 
ratings have already been made by customers but 
are kept secret by Netflix. Participants in the Prize 
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competition submit datasets of their predictions 
of those secret ratings. About half of the secret 
Submission ratings form the “Quiz” subset. For 
this half, Netflix publish a summary statistic of 
the success of each participant’s set of predic-
tions. The other half of the secret ratings form 
the “Test” subset. For these Netflix provide no 
feedback at all. It is the accuracy of prediction of 
the Test subset that will decide the Prize winner. 
Participants in the competition may make multiple 
submissions.

The published summary statistic is the root-
mean-square-error, RMSE, of the predicted values 
against the secret observed ratings in the Quiz 
subset. The smaller the RMSE, the better. On 
the 5-category rating scale, 1-5, the mean of the 
Quiz ratings is 3.67, and the standard deviation 
of the Quiz ratings around that mean is 1.1287. 
This would be the RMSE if the every prediction 
in the submitted dataset of predictions were to be 
the mean of the Quiz ratings.

The huge number of ratings in the Netflix 
dataset and the high proportion of missing data 
present no impediment to Rasch analysis in prin-
ciple, but the operational aspects are taxing. A di-
rect Andrich analysis of the data, followed by the 
generation of predictions, produces a Quiz RMSE 
of 0.9823. This looks good until it is compared 
with Netflix’s own prediction RMSE of 0.9514. 
To win the Prize, the submitted prediction must 
have an RMSE of 0.8563 or less. 

We might predict that each movie has its own 
partial credit scale. Perhaps there are some movies 
customers either love or hate, but other movies 
that evoke little extreme reaction. Applying a 
Partial Credit model to the movies allows each of 
the 17,770 movies to define its own 5-star rating 
scale structure. The result RMSE is 0.9867, worse 
than the Andrich-model prediction of 0.9823. 
This is surprising. Adding an extra 3 x 17770 
= 53,310 parameters to the model has made the 
predictions worse!

Or we might predict that each of the 480,189 
customers has a unique person-style rating scale. 
Perhaps there are some customers that either love 
or hate movies, but other customers who are 
more middle-of-the road. Applying a person-style 

partial credit model increases the number of esti-
mated parameters from approximately 500,000 to 
2,000,000. The resulting RMSE is 0.9907, worse 
yet! It appears that partial credit models, both 
for movies and for customers, overfit the Netflix 
dataset and make the prediction of future ratings 
worse. Modeling the rating scale structure to vary 
across customers or movies does not explain the 
variance in the Submission ratings. The data are 
multidimensional. 

The Challenge of Empirical 
Dimensionality

Dirks (2008) suggests that there are 11 main 
genres of movie: Action, Adventure, Comedy, 
Crime/Gangster, Drama, Epics/Historical, Hor-
ror, Musicals, Science Fiction, War, Westerns. 
Informal research reported by a Netflix contestant, 
however, suggests that a strictly-genre based ap-
proach is not likely to be successful. “... genre, 
cast, director, etc are much more useful for pre-
dicting what someone will rent rather than what 
someone’s rating for a particular movie will be” 
(bbame, 2007).

Accordingly, a major aspect of the Netflix 
Prize is devising and implementing methods 
which successfully extract empirical dimen-
sions from the Training dataset, and then use 
these dimensions to predict the responses in the 
Qualifying dataset. 

One approach to identifying the multidimen-
sional structure within ordinal data is principal 
components analysis of residuals (Linacre, 1998), 
but this is ineffective here. The data are too sparse, 
and the data matrix is too large for the standard 
decomposition algorithms. The estimation errors 
overwhelm the sought-for components.

What Does Work  
in Predicting Future Ratings

One productive area of exploration is called 
“Collaborative Filtering.” Researchers have ex-
erted considerable effort in developing techniques 
which identify similar patterns within the data, 
and then using these patterns to predict the values 
of missing or future data points. 
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When attempting to predict the rating by a 
customer of a movie, an obvious starting point 
is to identify another customer who has already 
rated the target movie and whose ratings approxi-
mately match the ratings of the target customer 
on movies they both rated. The rating of the 
matching customer is then the predicted rating 
of the target customer. This can be extended to 
a set of K most closely-matching customers, the 
customer’s K nearest neighbors, KNN, whose 
averaged rating on the target rating becomes the 
prediction. Or similarly the prediction can be 
based on finding the K nearest neighbors among 
the movies to the target movie, and using an aver-
age of the ratings by the target customer of those 
movies. In an experimental analysis, using a KNN 
approach yielded an RMSE of 0.9721, which is 
better than the Andrich-model RMSE of 0.9823. 
The sparseness of the data also weakens this ap-
proach because the number of close neighbors to 
many target customers or to many target movies 
is severely limited.

A more effective descriptive model is based 
on classical test theory. It is Singular Value De-
composition, SVD, which has been known for 
over a century. Here is an SVD model,

1

A

ni n i na ia
a

X x x y y
=

= + +å .	 (11)

Xni is the raw observation. It is initially decom-
posed into a customer component xn and a movie 
component xi. After these are estimated and fixed, 
the decomposition continues through A aspects 
(features, epochs) with the values fixed after each 
aspect is estimated prior to the next aspect being 
estimated. The aspect values are multiplicative. 
yna is the contribution of person n in aspect a, 
and yia is the contribution of movie i in aspect a. 
Each aspect can be conceptualized as a dimen-
sion, and the substantive meanings of the first 
few aspects have been identified by participants 
in the Netflix Prize competition. According to the 
Netflix website, RMSEs of the order of 0.9132 
have been obtained with the SVD approach. And 
there are indications that even lower values have 
been achieved by some participants.

The SVD approach is clearly productive, and 
it suggests a Rasch-SVD model of the form:

( )( 1)
1

log
A

nij ni j n i j na ia
a

P P B D F Y Y-
=

= - - +å ,	(12)

where Yna and Yia are the contributions to the 
measures for aspect a by person n and movie i. 
An experiment with this model yielded an RMSE 
of 0.9579, better than the simple Andrich model 
of 0.9823 but still not as good as Netflix’s own 
RMSE of 0.9514. For comparison, the leading 
competitor’s RMSE in the competition as of 
June 2007 is 0.8808, well on toward the winning 
target of 0.8563.

What Might Work

A more elaborate approach to prediction is 
offered by Boltzmann machines, which some 
researchers are applying to the Netflix Prize data. 
Boltzmann machines (Ackley et al., 1985) are al-
gorithms that make stochastic decisions based on 
data. They are composed of units, some of which 
are “visible,” i.e., direct from the data, and others 
are “hidden,” i.e., latent variables which must be 
inferred from the observed data. These machines 
were devised to model the learning process in 
neural networks.

A Boltzmann machine resembles a set of 
dynamic Rasch models. When unit u is given the 
opportunity to update its binary state of active 
Su = 1 or of inactive Su = 0, it first computes its 
total input, Iu, which is the sum of its own “bias” 
measure, Uu, and of the contribution, Wuv, coming 
from each of the other units, v, depending on that 
unit’s binary state, Sv, so that 

u u v uv
v u

I U S W
¹

= +å ,	 (13)

Unit u then becomes active with a probability 
given by the logistic function: 

( ) ( ) ( )( )Prob 1 exp 1 exp .u u uS I I= = + 	14

If the units are updated sequentially, the system 
will eventually stabilize into a Maxwell-Boltz-
mann distribution, hence the name “Boltzmann 
Machine.” 
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Restricted Boltzmann Machines (Smolensky, 
1986) consist of a layer of visible units and a layer 
of hidden units with no visible-visible or hidden-
hidden connections. Consequently predictions 
from all the hidden units can be made in parallel. 
These restricted machines suggest the formulation 
of Boltzmann-Rasch Machines (BRM).

Let us start from the Rasch model for di-
chotomous data which models the item difficulty, 
Di, of item i, where i = 1, L, when administered to 
a person n of ability Bn. where n = 1, N, producing 
an observed set of dichotomous responses {Xni}. 
Then, the dichotomous Rasch model is

1 0log( / )ni ni n iP P B D= - ,	 (15)

where Pni1 is the probability that Xni = 1. The 
abilities and difficulties are estimated in the 
usual way. 

Now let us add a hidden Boltzmann unit, 
termed a feature, to the Rasch model to construct 
a BRM. This feature models an off-dimension 
interaction between the persons and the items. Wi 
is the weight of the feature for item i. Wn is the 
weight of the feature for person n. Sni is a binary 
0-1 switch indicating whether the feature is active 
for person n and movie i.

( )1 0log( / )ni ni n i ni i nP P B D S W W= - + + 	16

with

Prob( 1) exp( ) / (1 exp( ))ni ni niS I I= = + 	17

When Sni = 0, the expected value of the rating, 
Euni, is

1 / (1 exp( ( ))uni n iE B D= + - - 	 18

But when Sni = 1, the expected value of the rat-
ing, Ewni, is

1 1 / (1 exp( ( ))wni n i i nP B D W W= + - - + + 	 19

The setting of the binary switch, Sni, for person n 
on movie i is given by the logistic model,

( )

( )

1 0
1

1

log( / )

,

L

ni ni j nj unj
j

N

k ki uki
k

S S U W X E

W X E

=

=

= + -

+ -

å

å 	 20

where Sni1 is the probability that Sni = 1, U is the 
“bias” measure of the feature, and the weight Wj 
only contributes to the switch setting for person 
n to the extent that Xnj departs from its baseline 
expectation Eunj, and similarly for Wk. Thus the 
combined stochastic BRM model of the expec-
tation of Eni of the predicted Boltzmann-Rasch 
rating becomes:

0 1ni ni uni ni wniE S E S E= + 	 21

This model has attractive features because the 
{Wi} and {Wn} can be interpreted as logit dis-
tances in another dimension which interacts 
probabilistically with the main Rasch dimension. 
U quantifies the influence of the dimensional 
aspect on the ratings, and Wi and Wn quantify the 
dimensional aspect for movie i and customer n.

The Rasch-Boltzmann model can be ex-
tended to polytomous data by rewriting (16):

( )
( 1)log( / )nij ni j n i j

ni i n

P P B D F

S W W
- = - -

+ + ,	 21

As before, when Sni = 0, the expected value based 
on (21) becomes Euni, and when Sni = 1, the ex-
pected value becomes Ewni, and equations (19) and 
(20) hold. Initial experiments with this model in-
dicate that it is difficult to estimate the parameter 
values. However, estimation of the parameters of 
other Boltzmann Machines has been successfully 
accomplished using Gibbs Sampling, so that is a 
promising approach to apply here.

Conclusion

It is clear that the prediction of future ratings 
requires effort beyond merely finding the best 
model that fits the current dataset and estimating 
its parameters. In fact, what conventional statistics 
might regard as the best-fitting descriptive model 
may be a relatively poor predictive model.
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Rasch theory provides a good foundation 
for predictive models because its intention is 
to produce parameter estimates as independent 
as possible of the idiosyncrasies in the current 
dataset. Nevertheless, the necessity of including 
additional structural dimensions into the measure-
ment framework suggests that extensions to the 
standard unidimensional Rasch models are re-
quired for effective prediction of future ratings.
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