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Introduction

Rasch models have the algebraic form of
logit-linear models . Techniques for estimating the
parameter values of such models have a long his
tory in modern statistics (Yule, 1925) . Several of
the estimation methods currently in wide use are
described in Wright and Masters (1982) . This
paper documents some of the other estimation
methods now in use, and some current variants
of earlier methods . Some statistical properties of
all estimation methods are also discussed .

The estimation methods described in Wright
and Master (1982) are the "Normal Approxima-
tion Algorithm" (PROX), "Pairwise Conditional
Estimation" (PAIR), "Unconditional Maximum
Likelihood Estimation" (UCON), also called
"Joint Maximum Likelihood Estimation"
(JMLE), and "Fully Conditional Estimation"
(FCON, CON), also called "Conditional Maxi-
mum Likelihood Estimation" (CMLE) .

Additional methods to be described here in-
clude "Marginal Maximum Likelihood Estima-
tion" (MMLE), "Extra-Conditional Maximum
Likelihood" (XMLE), "Minimum Chi-Square
Estimation", and loglinear estimation .

Refinements to estimation procedures in-
clude alternative rating scale parameterizations,
and alternatives to Newton-Raphson iteration .

Statistical properties to be examined include
consistency, bias and the effects ofmisestimation .

A Rasch Rating Scale Model

Following the notation in Wright and Mas-
ters (1982), a Rating Scale model (Andrich,
1978) which defines the probability, Tc,� ' of per
son n of ability R. on the latent variable being
observed in category x of item i with difficulty 8.
as :
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where the categories are ordered from 0 to m,
and Jr . } are the rating scale structure parameters

("step difficulties", "Rasch thresholds") . To is
introduced for mathematical symmetry . Algebra-
ically, it cancels out . It is usually set at 0 . But,
choosing a large negative value for do enables
the computation of probabilities for a very wide
range of ability-difficulty differences . These
would otherwise cause exponential overflow in
a computer's math processor. Computers are gen-
erally accommodating of floating-point under-
flow, treating it as equivalent to an arithmetical
zero, but they report computational failure on
floating-pointoverflow .

Sufficient statistics for the person and item
parameters are the sums of the scored observa-
tions, i .e ., the raw scores, associated with those
parameters . For instance, R n is the raw score as-
sociated with R n , and S . with 8 . . For each of the
scale parameters, ti .,j=1, m, a sufficient statistic
is the count of observations in the associated cat-
egory. Ronald Fisher (1922) writes ofa sufficient
statistic "that the statistic chosen should summa-
rize the whole of the relevant information sup-
plied by the sample." A Rasch model goes fur-
ther, specifying that the irrelevant information be
random noise with a certain distribution . Qual-
ity-control fit statistics report the extent to which
data meet this specification .

as :
Equation (1) is more conveniently expressed

log nix

/o ni(x-i)

Estimation Methods

Here,

	

is the probability of person n being
observed in category x-1 of item i. This expres-
sion of the Rasch model emphasizes that the
probabilistic, log-odds, structure of the data, on
the left, is modeled to be the manifestation of an
additive combination of latent parameters on the
right.

This section discusses estimation methods
omitted from Wright and Masters (1982) . It
largely overlaps material in Fischer and Molenaar
(1995) and Linacre (1989) to which the reader is
referred for a more technical exposition .



Linacre (1999) compared current implemen-
tations of several Rasch estimation algorithms,
and concluded that, for practical purposes, "all
methods produce statistically equivalent esti-
mates" (p . 402) . Rasch measurement has not yet
progressed to the point that the slight differences
between the estimates produced by different al-
gorithms have any systematic substantive impact .
Ofcourse they can have accidental consequences .
For instance, a barely statistically significant dif-
ference between two measures, might be com-
puted to be "just significant" when the measures
are estimated using one method, but "just falling
short of significance" when a different estima-
tion method is employed. This merely indicates
the insecure nature of hairline decisions, whether
of significance or of pass-fail decisions relative
to a criterion point .

Novel estimation methods continue to be
proposed, each with its own particular virtues .
For instance, Karabatsos (2001) proposes a non
parametric method, perhaps immune to scaling
distortions which Nickerson and McClelland
(1984) perceive to be undetectable by numerical
methods . Such methods have yet to reach pro-
duction software, so their substantive impact is
not yet known . The Rasch analyst, however,
should continue to exercise caution with respect
to claims such as "we suggest that our [Rasch
estimation] method is superior to all others cur-
rently available." (Sheng and Carriere, 2002) .
Marginal Maximum Likelihood Estimation
(MMLE)

MMLE is implemented in Item Response
Theory (IRT) software, such as BILOG (Mislevy
and Bock, 1996), and Rasch-specific software,
such as ConQuest (Wu, Adams and Wilson,
1998) . Its advantage is that parameter estimates
for very large samples and very long tests can be
obtained . Its disadvantage is that assertions must
be made about the sample distribution . A unique
feature is that this sample distribution is usually
modeled to include persons with extreme (zero
and perfect) scores .

Under MMLE, the sample distribution is
imagined to conform to some convenient math-
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ematical fiction . A frequent choice is the normal
distribution. Then the { R } can be replaced by a
normal distribution, parameterized with 0, of
mean p and standard deviation a, i .e ., of form
N(g,a) .

Equation (1) then becomes, for any person
u in the sample,

where
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Numerical estimates can be obtained by Newton-
Raphson iteration or other techniques, see Fischer
and Molenaar (1995) . A constraint must be intro-
duced to make the estimates unique . In ConQuest,
the constraint is that the mean ofthe item difficul-
ties is zero . In many IRT programs, the mean of
the person distribution, la, is set to zero .

The PROX algorithm follows the distribu-
tional train ofthought even further, applying nor-
mal distributions to both persons and items . It
takes advantage of an approximate identity be-
tween the Cumulative Normal (D and Logistic `F
distributions, which is (Camilli, 1994)

f f (0) dO=T( x )=(D( x/1.702 )

In fact, Joseph Berkson (1944), who coined the
term "logit", proclaims that this approximation
is indeed good enough for practical work . It
greatly simplifies and speeds computation, be-
cause the integral now has a closed form solu-
tion . This usually removes the need for integra-
tion by numerical quadrature, which itself is a
source of estimation error. In view of the fact
that the asserted person distribution is, at best,
only an approximate match to the empirical dis-
tribution, it is surprising that MMLE software
does not routinely take advantage of this equiva-
lence .
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As usually implemented, MMLE provides
item and rating scale structure parameter esti-
mates, but only summary estimates of the person
measures . Individual person measures can be
obtained by estimating the measure correspond-
ing to each raw score given the item and struc-
ture parameters, as in the JMLE method (Wright
and Masters, 1982, p . 77) . But this will not sum-
marize to the same person measure distribution
as the MMLE estimates . In particular, under the
JMLE method, extreme scores do not yield esti-
mable measures .

Another approach is to consider the raw
score of person n, R. , and to compute the prob-
ability, Pne that the person had a particular abil
ity, 0 . This computation is performed over the
entire MMLE ability distribution . The MMLE
person ability is

+00
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Estimates like these will necessarily summarize
to the asserted MMLE distribution, no matter
what it is . Accordingly it is essential that they be
characterized with fit statistics if any attempt is
to be made validate the reasonableness of the
asserted distribution .

MMLE, and its close relative, PROX, can
mislead the unwary . An obvious drawback to
these approaches is that they violate Rasch's pre
cept that "it ought to be possible to compare
stimuli belonging to the same class-'measuring
the same thing'-independent of which particu-
lar individuals within a class considered were
instrumental for the comparison." (Rasch, 1980,
p. xx) . Indeed on the page, Rasch has reported
criticisms of "group-centered" statistics . Practi-
cal considerations, however, can override ideal-
istic ambitions . MMLE and PROX were devel-
oped for the analysis of dichotomous educational
tests in which it is reasonable to assume a
unimodal, reasonably symmetric person distribu-
tion . Misestimation at the tales of the distribu-
tion, geniuses and dunces, would not lead to in-
correct inferences .

In clinical situations, however, the distribu-
tions and inferences can be far different . If a typi-
cal clinical instrument, e.g ., a quality of life as
sessment, is applied to a random sample of the
adult population, then the results can be expected
to be highly skewed . The crucial clinical cases
are likely to be in the long lower tail . If analysis
combines clinical and non-clinical samples, then
the person distribution may be bimodal . Even in
educational testing bimodal distributions may
occur (Lee, 1991) . In clinical applications, mis-
estimation may lead to incorrect inferences about
the clinical state, or the clinical improvement, of
patients who are the focus of the assessment .

Accordingly, care must be taken to verify that
the asserted person distribution is a reasonable
match to the empirical one . This can be done by
inspection of the raw score distribution, or, for
analyses involving missing data, comparison of
the MMLE person distribution withthat produced
by JMLE or PAIR
Extra-Conditional Maximum Likelihood
Estimation (XMLE)

The familiar objection to the convenient
JMLE method is that under certain conditions its
estimates are statistically inconsistent and, for
short tests or small samples, noticeably statisti-
cally biased (Haberman,1977 ; Wright 1988) . The
JMLE bias produces estimates that are too dis-
persed . For a two-item dichotomous test, the
JMLE item estimates are twice as dispersed as
the CMLE ones (Andersen, 1973) . Wright (1988)
discusses a simple correction which effectively
eliminates JMLE bias .

An analytic attempt to remedy the estimation-
bias defect in JMLE, while maintaining flexibility
of data designs, is XMLE, "extra-conditional
MLE", originally XCON (Linacre, 1989), imple-
mented in WINSTEPS (Linacre, 2002c) . The
source of the bias in JMLE estimation is that it
acts as though it can estimate finite measures for
extreme score vectors, even though it can't. XMLE
adjusts for this by removing the possibility of ex-
treme score vectors from the estimation space .

Equation (1) specifies the probability that
Xn,=x and this is the probability used in JMLE.



But the probability that Xni is part of a zero score
vector for person n is

L
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Similarly for the perfect score vector, Tcnimi, and
the extreme item score vectors 71,(),i and 7c,,,,i'
Accordingly, in XMLE, these four probabilities
are computed for each Xni , and then the probabili-
ties used for estimation become :
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where y is a local normalizing value such that
EPnW X--0 ' M, is 0.

JMLE estimation is then executed with these
adjusted probabilities . For instance, Wright and
Masters (1982, p . 76) equation 4.4 .5 retains its
form but with adjusted probabilities .

al.
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where a, is the log-likelihood of the the data. R n
is the raw score of person n on a test of L items
each with categories numbered from 0 to m.

This adjustment has the effect of reducing
the probabilities of the extreme categories . Con-
sequently the XMLE estimate corresponding to
a score vector for an item or person, is more cen-
tral than the JMLE estimate . Thus XMLE essen-
tially corrects the bias and inconsistency prob-
lems, but, as always, raising other concerns which
are addressed later in this chapter.
Minimum Chi-Square Estimation

This estimation method is older than any of
the others listed here or in Wright and Masters
(1982) . It is applied to logit-linear models in Yule
(1925) . It produces parameter estimates which
maximize the fit of the data to the model . The
expectation, Eni, corresponding to observation,
Xm., is :
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The multinomial variance, Wni, of the observa-
tion about its expectation is given by :
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From these can be obtained a set of standardized
residuals,

{Zni},
whose distribution approximates

N(0,1) :

_ Xni - Eni
Zni -

W ni

Accumulating these, for any person n or item i,
yields an approximate chi-square statistic :
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whereL is the length of the test taken by person
n .

To minimize this for Rn, i.e ., to find the value
of Rn which produces the best local fit ofthe data
to the model, we use :

which yields relationships similar to :

(12)
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for which estimates can be obtained by Newton-
Raphson iteration .

The first term of (15) sums to zero when the
observed person raw score matches the expected
score, but the sum of the second term exists if
there is any imbalance in the residuals . Figure 1
illustrates this with a 6-item dichotomous test .
The item difficulties are symmetrically distrib-
uted so that a raw score of 3 on the test, places
the MLE person ability estimate in the center of
the items. If the respondent had succeeded on the
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three easier items, and failed on the three harder,
this would also have been the minimum chi-
square ability estimate . This respondent, however,
failed on an easier item, but succeeded on the
most difficult item. The chi-squares for this re-
sponse string for different ability levels are plot-
ted . The minimum chi-square, and so the ability
estimate according to this method, is now at 0.33
logits, noticeably above the center of the test .

Using the minimum chi-square method, per-
sons with different response patterns, but with
the same raw score, obtain different measures
characterized by different standard errors, and
similarly for the items . This is usually consid-
ered unacceptable for reporting purposes, even
though PAIR, as implemented in RUMM2010
(Andrich, et al ., 2000), reports different estimates
for dichotomous items with the same raw score,
and IRTprograms, such as MULTILOG (Thissen,
1991), routinely report different estimates for
persons with the same raw score .
Log-Linear Estimation

Strictly speaking, this isn't a different method
of estimation, but rather a different way of for-
mulating the Rasch model. Typically, this formu
lation is used so that Rasch item parameters can

-1

Figure 1 . Minimum chi-square estimation .
A

-2

be estimated with generally available statistical
software, though LOGIMO (Kelderman and
Steen, 1988) also takes advantage of this
conceptualization .

The log-linear version of a Rasch model is
based on cell frequencies in a contingency table .
The cell identification corresponds to the person
response string . Thus the probability ofobserving
a particular response string, S, which sums to raw
score R s, for a person of ability (3n is given by :

whereX" is the response to item i in string S which
consists of L, the test length, responses .
Then expected frequency of this cell for the
sample of N persons is thus :

So that, from (1),

Freq (S)_

	

(17)

log(H'rey(S))=-YX, .S ; -

(16)

where 8 . is the difficulty of item i and ti k is the

bility Estimate (Logits)



Rasch threshold parameter at which categories
k-1 and k are equally probably. L R, is a term de-
pendent on the raw score, R , , the person distribu-
tion and the item distribution, but not on the par-
ticular response string . LRc is constant across all
response strings with the same raw score as S .

Item and scale structure parameters in this
formulation can be estimated using standard log-
linear estimation methods .

Technicalities of Estimation

Precision and Accuracy

Precision is reproducibility, i .e ., the extent
to which a measuring instrument agrees with it-
self. Accuracy is the extent to which an instru
ment reports the "truth" . In thermometry, these
are seen to be clearly different, and sometimes
opposing, attributes (National Physical Labora-
tory, 1955) . Rasch software routinely reports pre-
cision as estimate standard errors, in a manner
familiar to statisticians and metrologists . End
users, however, are rarely able to capitalize on
this information, and tend to regard Rasch mea-
sures in the same way they have always regarded
raw scores, i .e ., as point estimates .

Accuracy of Rascb estimates, in terms ofan
external reference standard, such as a "standard
meter", is not known or reported. Rasch measure
ment has not yet advanced that far. Internal ac-
curacy is reported as the fit of the data to a Rasch
model, but it is largely unclear what level of ac-
curacy is needed for any particular application .
In practice, however, the alternatives to Rasch
measurement, be they raw scores, descriptive IRT
models, or qualitative approaches, are even less
secure . Consequently, once blatant inaccuracies,
such as wild guessing, miskeyed items and
misoriented rating scales, have been eliminated
from the analysis, the resultant Rasch estimates
are "accurate enough for government work."
Missing Data

For conventional analyses, complete data
exist when there is a scored observation for ev-
ery person on every item . Missing data can oc
cur when items are not administered to persons,
as in adaptive testing and test linking, or when
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persons do not respond to items . Typically, if a
non-response is scored, it is keyed as "wrong"
for a multiple-choice test, and as "don't know"
or "neutral" for an attitude survey . But this de-
pends on the purpose of the analysis . In this
present discussion, "missing data" means data for
which no scored responses are available .

In principle, missing data are of no concern
to the Rasch model . Equation (1) is an observa-
tion-level model . Estimation methods which rely
on sufficient statistics, such as JMLE and PAIR,
merely summarize the non-missing observations
that are relevant to each parameter, and compare
them with their expectations . Thus, for JMLE or
XMLE, Equation (9) becomes

aQ� _

	

-

	

kP � ik
i=llXni1ii k=0

Rn = X � ,
i=11 X � i?0

Estimate Consistency

(19)

Some estimation methods require complete
data, or, a little more flexibly, data consisting of
complete subsets . These methods include CMLE
and log-linear approaches . Since complete data
permits optimization ofestimationroutines, some
implementations of PROX, JMLE and MMLE
also require complete data . When complete data
are required, either casewise deletion or imputa-
tion of missing values is performed . If only a few
observations are missing in the data set, casewise
deletion is indicated . When performed, imputa-
tion of missing values also requires correction of
measure standard errors and fit statistics for the
influence of the imputed data .

	

.

Consistency is the property that, given an
infinite amount of data which fit a statistical
model, the estimation procedure would recover
the values of the parameters used to generate
those data . Consistency differs from accuracy.
Accuracy is the extent to which the estimates meet
external criteria of exactness . In Rasch analysis,
these are usually quality-control fit criteria .

Consistency can never be observed directly .
It can only be inferred from the mathematical
properties ofthe estimation method . It is usually
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assumed to be asymptotic, so that, as the amount
of data becomes large, estimates are expected to
approach their generating values, but this is not
necessarily true . For instance, a Monte Carlo
method which guessed at random would finally
guess the correct estimate, but the last guess of a
large number of guesses might not be any better
than the first.

Considerable effort has been expended criti-
cizing JMLE for its lack of consistency, e.g .,
Jansen, et al ., (1988) . But consistency is a slip
pery property. Consistency requires not only an
infinite amount of data, but data that is infinite in
particular ways . Thus Haberman (1977) demon-
strates that JMLE can be consistent if both the
number of persons and number of items become
infinite together. Estimation methods which elimi-
nate, in some way, the individual person param-
eters fromestimation ofthe item parameters, such
as CMLE, PAIR and MMLE, are consistent if
the number ofpersons becomes infinite (Pfanzagl,
1994 ; Zwinderman 1995) . CMLE, as usually
implemented, is not consistent if the number of
persons remains finite, but the number of items
becomes infinite .

The usual reason for inconsistency is the pos-
sibility ofextreme score vectors (zero and perfect
raw scores) . These imply that the corresponding
parameter is infinite or undefined . How able is a
person who succeeds on every item? How easy is
an item on which everyone succeeds? Consistency
requires that, as the amount of data become infi-
nite, the probability of an extreme score vector in
the estimation space becomes zero .

For CMLE, consistency occurs in two stages .
Extreme person vectors are explicitly excluded
from the estimation space . Only non-extreme
person score vectors contribute to the likelihood
of the data, which is to be maximized . The likeli-
hood of extreme item vectors is reduced to zero
by expanding the person sample to infinity, so
that it becomes certain that there is at least one
success and one failure on every item .

Consistency is a theoretical property. Of
practical concern is the extent to which estimates
based on finite data differ from their true values .
This is termed estimation bias .

Estimate Bias

An estimation algorithm isunlikely to recover
the true value of a parameter from finite data . In-
stead, for each parameter an estimate is reported
and its precision, in the form of a standard error of
that estimate around its unknown true value . Since
the true value is unknown, the estimate is usually
treated as the true value, and standard error is ap-
plied to the estimate . Since error distributions are
not always of a simple form, measurement impre-
cision may be reported in different forms, e.g., as
plausible values in ConQuest. Nevertheless, it is
assumed that the true value is somehow central in
the error distribution .

Estimation bias occurs when the estimated
values are, on average, higher or lower than the
true values, and perhaps even outside the reported
precision . Though JMLE estimation bias has been
thoroughly discussed (Wright, 1988), that ofother
estimation algorithms has been generally ignored .
For example, CMLE is generally much less bi-
ased than JMLE for short tests, but not totally
unbiased .

Consider a 2-item dichotomous test admin-
istered to 3 persons . The 64 possible data matri-
ces are shown in Table 1 . Only the 6 matrices
shown in roman bold contain no extreme score
vectors for either persons or items . When com-
puting the likelihoods used in making its esti-
mates, JMLE includes all 64 data matrices, de-
spite the fact that 58 of them contain inestimable
response strings . CMLE explicitly excludes data
matrices with inestimable person response strings
from its likelihood calculations . This eliminates
56 of the 64 data matrices, keeping the 6 bolded
matrices . CMLE also keeps the two data matri-
ces with inestimable item response strings which
are shown in italics at the diagonal corners of
Table 1 . These introduce bias into the CMLE
estimates . According to JMLE, the logit distance
between the items is 21og(2) = 1.39 logits . Ac-
cording to CMLE, the distance is log(2) = 0.69
logits . In fact, the exact MLE estimate for these
data is that the items are infinitely far apart!

In this boundary case, the JMLE estimates
are actually more accurate than the CMLE ones,



though both are infinitely wrong . XMLE estima-
tion diverges on this analysis, which, though cor-
rect, is not helpful . Here is a case where incor-
rect, but finite, estimates are more useful than
correct, infinite ones .

If we double the sample size to 6 persons,
keeping the same success ratio, there are now
4096 possible data matrices, of which 62 are es
timable . CMLE again includes the likelihood for
2 inestimable matrices and JMLE includes all
4096 possible matrices, The CMLE item esti-
mates remain 0.69 logits apart, and the JMLE
estimate remains 1 .39 logits . The exact MLE es-
timate is now .891ogits apart . For 9 persons, the
exact MLE estimate is .74 logits apart . As sample
size increases, the bias in the CMLE estimates
rapidly disappears . For JMLE it never does .

The mostextreme example ofestimation bias
is that of JMLE estimates obtained from a two-
item dichotomous test which we have just exam
ined . The reported dispersion of the two items is
twice that of the CMLE values . This motivated
Wright and Douglas (1977) to propose an (L-1)IL
bias correction for short tests, which, according to
Jansen, et al., (1988), largely eliminates the bias
for tests of over 10 items . But, for long tests, or
short tests comprising rating scales with many
categories, the JMLE estimation bias also be-

Table 1
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comes negligibly small, even without explicit
correction .

The small sample estimation bias for PAIR
and MMLE depends on technical details of the
implementation .
Estimation Symmetry

As Rasch measurement is applied in ever
more diverse fields, the problem ofestimate sym-
metry is coming more into prominence . In the
educational and health care fields, it is generally
obvious what are the objects of measurement, the
students or patients to be measured, and what are
the agents ofmeasurement, the test items designed
to perform the probing . But, even from the earli-
est days, there are cases where this is uncertain .

In Georg Rasch's (1969) analysis of traffic
accidents, he considered the number of fatal ac-
cidents in specific short road segments over spe
cific periods of time . With current Rasch meth-
odology, this situation could be easily modeled
using the rating scale, O=no fatalities, 1=1 fatal
accident, 2=more than one fatal accident . But
what is the object of measurement and what is
the agent? Is the object of the investigation to
measure "danger inherent in different road seg-
ments" or "danger inherent in driving at differ-
ent times of day"? The choice of what are the

All 64 possible data matrices, each comprising 2 dichotomous items (rows)administered to 3
persons (columns)

000 000 000 000 000 000 000 000
000 001 010 011 100 101 110 111
100 100 100 100 100 100 100 100
000 001 010 011 100 101 110 111
010 010 010 010 010 010 010 010
000 001 010 011 100 101 110 111
110 110 110 110 110 110 110 110
000 001 010 011 100 101 110 111
001 001 001 001 001 001 001 001
000 001 010 011 100 101 110 111
101 101 101 101 101 101 101 101
000 001 010 011 100 101 110 111
011 011 011 011 011 011 011 011
000 001 010 011 100 101 110 111
111 111 111 111 111 111 111 111
000 001 010 011 100 101 110 111
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objects of measurement and what are the agents
is arbitrary.

This may seem to be an academic discus-
sion until the data matrix is constructed, and es-
timation undertaken . Though Rasch models, like
(1), are symmetric in the way objects and agents
enter into the analysis, estimation software rarely
is . Most software provides a more detailed analy-
sis for items than for persons . More perplexing
to the user, however, is the fact that transposing
the data matrix can produce non-equivalent sets
ofestimates . JMLE and PROX estimates are sym-
metric . Perforce, MMLE must be asymmetric
because its distributional specification is one-
sided . CMLE and PAIR estimates are asymmet-
ric, but the extent of the mismatch depends on
the methods used to obtain object estimates from
the agent estimates .
Newton-Raphson : A Cautionary Tale

Except for the PROX method applied to
complete data (Cohen, 1979), the estimation of
Rasch measures requires iteration . An initial es
timate of a measure is made. The implications of
this measure are compared with the data . A cor-
rection is made to the initial measure in an at-
tempt to bring its implications into closer con-
formity with the data . Many commonly used
iterative methods are based on the Newton-
Raphson approach . These methods provide ad-
justments based on the sizes of discrepancies

between the observed and the expected, and the
local slopes of relevant mathematical functions .
Newton-Raphson is particularly well suited to the
Rasch model because of the mathematically well-
behaved nature of the logistic ogive . But there
can be problems .

If there is only one estimate to be obtained,
e.g., the measure of a person on a set of items of
known difficulty, then Newton-Raphson can work
smoothly and quickly . In order to avoid overflow
or loss of precision during computation, it is ad-
visable to choose an initial estimate more central
than the final estimate, and also to limit changes
in the estimate to one logit per iteration .

Conceptually, Newton-Raphson is operating
on a plane, a two-dimensional space . Under most
circumstances, however, many parameters are
estimated simultaneously . For instance, for a di-
chotomous test of L items, L-1 free parameters
are usually estimated and one constraint imposed .
This means that Newton-Raphson is operating in
an L-dimensional space, but suggesting changes
for each estimate in terms of a local 2-dimen-
sional space . This can leadto the situation shown
in Figure 2 .

In Figure 2, an initial estimate is made. Then,
based on the slope ofthe likelihood function, and
the amount ofdiscrepancy between the observed
and expected values, a revised, second estimate
is produced . The second estimate produces a re-

Figure 2 . Effect of misestimation on observation fit .
Measure Estimate



vised slope and discrepancy, leading to a third
estimate. In principle, these estimates rapidly
approach the best estimate, i.e ., the value of the
parameter most likely to have generated the ob-
served data .

In Figure 2, however, the Newton-Raphson
approach is failing to converge on the best esti-
mate . The slope of the mathematical function is
such that the estimates arejumping from one side
of the best estimate to the other. This oscillating
behavior is usually an indication that the likeli-
hood function is rather flat, so that a range of
estimates are almost equivalent.

In Figure 2, it is seen that the third estimate is
slightly further away from the best estimate than
was the initial estimate . This type of divergent
behavior has been observed with 3-PL estimation
(Stocking, 1989). I have also observed this to oc-
cur with Rasch estimation ofincomplete data sets,
containing weakly connected subsets of data, or
when there are categories of a rating scale that are
rarely observed. Under these circumstances, other
methods may be more robust. These methods in-
clude proportional curve-fitting (implemented in
Winsteps) and Monte Carlo techniques .
Misestimation, Convergence and Fit

Paradoxically, as estimates of measures im-
prove, their fit to the Rasch model can become
worse . Consider a dichotomous test, such as the
Knox Cube Test (Wright and Stone, 1979) . Sup-
pose that due to gross misestimation, every item
was estimated to have the same difficulty, and
every person was estimated to have an ability
exactly targeted on that difficulty . Then the model
expectation for each person on each item is .5,
and the model binomial standard deviation of an
observation about its expectation is 0.5 . In fact,
the observations are failure (0) or success (1) .
All the "observed-expected" residuals are 0.5, so
every single standardized residual is 1 .0 . Chi-
square statistics would report stochastically per-
fect model fit!

The moral of this story is that fit statistics
can be misleading if the estimates are far from
the latent parameter values . An estimate can al-
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ways be thought of as "close", i.e ., "different from
the estimate for an adjacent raw score", if the
expected raw score corresponding to that esti-
mate is within 0.5 score points of its observed
value . This places the estimate within 0.5 (SEZ)
logits-of its most likely value, where SE is the
standard error of the estimate . This level of pre-
cision in estimation is not usually required in
complete data sets . For instance, for a typical
dichotomous item, with p-value of .8, adminis-
tered to 300 persons, the value of 0.5 (SEZ ) =
.01 logits is too small to have any noticeable im-
pact on fit computations or almost any substan-
tive decision, and much less than the difficulty
estimate's S.E . of . 14 logits .

For most estimation methods, it is the esti-
mates corresponding to almost extreme scores
that are the last to become close, i .e., to converge .
Consequently, methods that announce conver-
gence based on the small size ofa change in some
average or summary indicator may noticeably
misestimate almost extreme measures, usually by
making them too central . This also tends to make
their fit too good .

Figure 3 plots the reported standardized re-
siduals (on the y-axis) for dichotomous observa-
tions for different abilities relative to an item (the
contours), and for different amounts of misesti-
mation (on the x-axis) . It is seen that that the stan-
dardized residuals corresponding to unexpected
responses by persons far from an item are those
that are most sensitive to misestimation . A one-
logit misestimation associated with outlying un-
expectedresponses canreduce their standardized
residuals by 30%, effectively halving their
squared residuals . These are the values that most
influence conventional chi-square statistics, such
as Wright's OUTFIT statistic, and, in a similar
way, likelihood-ratio tests .

The Growing Family of Rasch Models

The "growing family of Rasch models"
(Rost, 2000) presents both opportunities and chal-
lenges . Opportunities include widening the ap
plication of Rasch measurement methodology,
and making better use of it in current areas of
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application . Challenges include more flexible
measurement models and methods of estimation .

Rating Scale Estimation

Under Rasch model conditions, rating scale
categories are conceptualized to be ordered in-
dicators of performance on an item . The essen
tial observation is the count of such categories
up from the lowest category, whether or not that
is the process used by the respondent on the way
to being observed in that category. This implies
that a category has a specific meaning, i.e ., is
"well-enough defined" (Masters and Wright,
1984) . An obvious rating scale is the two cat-
egory, "wrong", "right" scale associated with
many dichotomous multiple-choice items .

This contrasts with the arbitrary categoriza-
tion inherent in, say, the Graded Response model
and other models which attempt to be "invariant
under the grouping of adjacent response catego-
ries" (McCullagh, 1985, p.39) . For these models,
categories, though ordered, are not qualitatively
different, but are merely defined for convenience .
Such categorizations include arbitrary stratifica-
tions ofpercents, times, distances, weights and the
like . These are often encountered in a large-scale
surveys, such as a national census .

Figure 3 . Effect of misestimation on observation fit .

Inpractice, arating scale definition is neither
completely defined nor completely arbitrary. For
scales of a few categories, the implications of each
are usually fairly clear-cut, and, Rasch models, like
Equation (1) are usually straight-forward to esti-
mate . But as the number of categories increases,
and their meanings become less clear-cut, the pa-
rameterizationofindividual categories can become
insecure . Categories may have very low frequen-
cies, or even not be observed .

There is a mathematical device to maintain
unobserved intermediate categories in the rating
scale structure (Wilson, 1991) . If category x is not
observed, then Equation (2) can be rewritten,

log =2ln - (2S, + Zx-I,x+I)

	

(20)

where ,T,- , ,,+ , parameterizes thepoint at which cat-
egories x-1 and x+1 are equally probable, and
Tc~ . x = 0 . But this device may not be satisfactory
from the standpoint of inference, because it pre-
dicts that category x will never be observed .

RUMM2010 produces estimates for a
reparameterization of the rating scale structure
in terms of its mean ("location"), dispersion
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("unit"), skewness and kurtosis . For long rating
scales, this enables the inclusion of unobserved
categories and regularizes the probabilistic rela-
tionship of all the categories . For instance, if the
analyst believes that the categories define a regu-
lar progression, then this can be imposed on the
estimates . Consequently, local, accidental varia-
tion in the use of categories is smoothed out. Sim-
plification, however, comes at a cost . Just as with
the assertion of distributions for MMLE, care
must be taken to verify that the summary struc-
ture does not hide important features of the rat-
ing scale . For instance, a long bipolar scale might
be conveniently summarized by mean and dis-
persion parameters, but these might obscure a
malfunctioning central "don't know" category .
Equation (2) can be expressed in terms of a scale
structure mean, lt, and dispersion, 4, as :

log =#,, - ( u, + ( 2x-m ) ~ )

	

(21)

In this formulation, negative ~ would indicate
"disordered thresholds" . Disordered thresholds
do not imply disordered categories . Disordered
categories represent a substantive disagreement
between the ordering of the categories and the
orientation of the latent variable . An example is
a negatively-worded statement on an attitude sur-
vey. Unless responses to that item are reverse-
scored, its categories will be disordered, in fact
reverse-ordered, relative to the latent variable .
Disordered categories are usually accomapnied
by gross category-level and item-level misfit.

Disordered thresholds reflect the existence
of non-modal categories, i .e ., categories that do
not have a higher probability of being observed
than the other categories at any point along the
latent variable . In principal, these present no ad-
ditional estimation problems unless the non-
modal category is unobserved, i.e ., a sampling
or incidental zero . In this case, the device de-
scribed in (20) above may be employed .

Disordered thresholds indicate that a cat-
egory corresponds to a narrow interval on the
latent variable. This is good if the item is intended
to be highly discriminating, so that a small dis-
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tance along the latent variable corresponds to a
large distance along the rating scale . This is bad
if each category is intended to correspond to a
broad step in development .

Empirically incorrect category and thresh-
old ordering are among aspects of the function-
ing ofrating scales discussed in Linacre (2002a) .
Omitted, however, from that discussion is the
condition necessary for the existence of super-
modal categories . Super-modal categories are
those, that in some region of the latent variable,
have a higher probability of being observed than
all other categories combined . This contrasts with
modal categories which may not go beyond be-
ing more probable than any other single category.
The condition for supermodality is that the i k ad-
vance by (or that ~/ 2 is) at least 1 .1 + m/10 logits .

Figure 4 illustrates non-modal, modal and
super-modal categories . In this Figure, the model
probabilities of a person, of given ability rela
tive to the item difficulty, being observed in each
category are shown . Extreme categories, in this
case 0 and 4, are always super-modal, because
their probabilities asymptotically approach 1 .0
at the extremes ofthe latent variable. Category 3
is here also super-modal as its peak probability
exceeds .5 . Category 2 is modal because its peak
probability is higher than the probability of any
other category at some point on the latent vari-
able . Category 1 is non-modal . Either category 0
or category 2 is always more probable than cat-
egory 1 . It is seen that the points of equal prob-
ability between categories 0 and 1, ti p , and be-
tween categories 1 and 2, tie, are in the reverse
order of the categories along the latent variable .
These are the "disordered thresholds" .
Combinations of item structures and item
discriminations

An area ofestimation that is only starting to
be addressed is the combining of different Rasch
mgdels in one analysis . A quality of life instru
ment, for instance, may include true-false items,
Likert scales, frequency scales, intensity scales,
Poisson counts of events, Bernoulli trials and
paired comparisons all in the same instrument .
Rasch estimation methods vary greatly in their
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capacity to encompass different models in one
analysis . JMLE is proving to be the most flex-
ible . Facets (Linacre, 2002b) can co-calibrate all
the item types just listed.

An obvious extension of Equation (2) to ac-
commodate several different rating scales struc-
tures within the same instrument is :

log
~~nig(x-l) J

where g indicates a group of items which share
the same rating scale response structure . If all
items are assigned to the same one group, this is
the Rating Scale (Andrich, 1978) model . If each
item is assigned to its own group, this is the "Un-
restricted" (Andrich, et al ., 2000) or "Partial
Credit" model (Masters, 1982) .

It is typical, however, for each item group-
ing to exhibit its own sub-dimension, and also to
have its own level of discrimination on the latent
variable . Different sub-dimensions would be
equivalent to incorporating temperature readings
from alcohol thermometers, mercury thermom-
eters and thermocouples in the same analysis .
Construction of thermometers is now so regular-
ized, that this is no longer thought to be of con-

= ,8 , - ( 8 i.t + a,, )

	

(22)

Figure 4. Super-modal, modal and non-modal categories . Table 1 :

cern . Psychometrics is not yet so advanced, but,
provided the impact of the sub-dimensions is seen
to be small, there is little practical motivation for
reporting two or more measures whose meaning,
for decision-makers, is identical.

Differently discriminating sub-groups of
items are more awkward to manage . These are
equivalent to mixing Celsius and Fahrenheit tem
peratures in the same analysis without conver-
sion . Of course, every item, just like every ther-
mometer, has slightly different discrimination .
Linacre (2000) indicates that discriminations in
the range of 0.5-1 .5 (0.9-2.5 on probit scale) can
be usefully accommodated.

For wider ranges of discrimination, or for
sub-groups comprising relatively high or low dis-
criminating items, OPLM (Verhelst, et al ., 1995)
permits the imputing ofdiscrimination parameters
as though they are known constants . This differs
from the 2-PL IRT model in which discrimina-
tions are estimated simultaneously with the item
difficulties . Verhelst and Glass (1995) suggest
statistics which may be useful in guiding the
choice of the discrimination constants . A more
direct option may be to read them off a graph,
such as that provided in Linacre (2000) . An al-
ternative, if the subgroups of items are long
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enough, is to analyze each subgroup separately,
and then to combine the resulting estimates after
conversion to a common linear scale, in exactly
the same way that Celsius and Fahrenheit tem-
peratures are routinely combined .

Conclusion

The remarkable variety and adaptability of
Rasch measure estimation algorithms already
supports the analysis of a vast range of ordered
categorical data . Those few technical intricacies
that actually have substantive implications can
usually be overcome by reconceptualizing the
analytical problem or applying an alternative es-
timation method . The challenge is no longer to
estimate measures, it is to understand and com-
municate their meaning .
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