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 Estimation Methods for Rasch Measures 

 

Linacre, J. M. (1999) . Understanding Rasch measurement: estimation methods for Rasch 

Measures. Journal of Outcome Measurement, 3, 381-405 . 

 

Rasch measurement is the only way to convert ordinal observations into linear measures (Fischer, 

1995).  These measures are represented as parameters in a Rasch model and are estimated from the 

data.  The analyst, however, is rarely concerned about the estimation process, provided that it 

succeeds in obtaining reasonable values for the measures.  An appreciation of the different methods 

of estimation, however, will better enable the analyst to evaluate what "success" means. 

 

 Estimation, Precision and Accuracy 

 

When a new measurement situation is encountered, the Rasch measures are not known.  The 

measures, the parameters of a Rasch model, must be inferred from data.  This is accomplished by 

means of the method of "inverse probability", first addressed by Jacob Bernoulli (1713).  The 

resultant estimates of the parameters are values obtained There is no "one best method" of 

estimation, nor is there "one best set" of Rasch estimates.  Parameters are always estimated with 

imprecision and inaccuracy. 

 

In this context, precision relates to the uncertainty in the estimated location of the parameter on the 

latent variable when it is specified that the data fit the Rasch model.  The term "assumed" is 

avoided here, because the fit of the data to the model can be tested immediately.  The term 

"assumed" is used when estimation conditions are introduced which cannot be tested immediately, 

and so are truly assumptions.  When the data are specified to fit a Rasch model, then all 

unexpectedness in the data are deemed to be products of the stochastic process inherent in the 

model. 

 

Precision can always be increased by collecting more relevant data or specifying rating scales with 

more categories, with the continuing condition that the data are specified to fit the model.  Precision 

can be artificially improved by introducing constraints, often as assumptions, which reduce the 

location uncertainty.  The most commonly introduced assumption is that one or more characteristics 

underlying the data are normally distributed. 

 

Accuracy relates to the departure of the data from those values predicted by a Rasch model given 

the estimated locations of the parameters.  No empirical data set fits the Rasch model perfectly, but 

"for problem solving purposes, we do not require an exact, but only an approximate, resemblance 

between theoretical results and experimental ones." (Laudan, 1977).  Nevertheless, as the data 

depart ever further from meeting Rasch model expectations, doubt not only about the locations, but 

also about the meaning of parameter estimates increases.  Accuracy can be increased by collecting 

more data that is likely to conform to a Rasch model, e.g., by avoiding administering items that are 

too trivial or too challenging, which are likely to provoke irrelevant behavior in respondents.  

Accuracy can also be increased by screening out responses deemed irrelevant for measurement 

purposes.  Such responses may be highly diagnostic of idiosyncratic aspects of respondents, items, 

judges or the rating scale, but they do not contribute to constructing a generalizable measurement 

system. 
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In practice, some constraints must be introduced in order to make estimation possible, and some 

screening of the data must be performed, if the estimates are to be meaningful.  In fact, a general 

assumption of Rasch estimation procedures is that the uncertainty in the data, at the response level, 

is, in some sense, normally distributed. 

 

Due to the arbitrary nature of pass-fail decisions and the practical need to introduce determinacy 

into both norm-referenced and criterion-referenced reporting, Rasch estimates (as well as raw 

scores and other statistics) are usually treated as point-estimates of their underlying parameters.  

Thus estimates are commonly reported with more significant figures than either their precision or 

their accuracy supports.  Since all estimation methods are  approximate, the same estimation 

method under different conditions, or different estimation methods under the same conditions, may 

disagree numerically as to whether a subject, near to the pass-fail points, is a "pass" or a "fail".  

When the precision and accuracy of estimates are taken into account, even conspicuously different 

estimation methods agree (Wright, 1988). 

 

 

nables the problemsSuch observations, however, are modeled to be stochastic and non-linear.  

Hence, the parameters of a Rasch model, the Rasch measures, are not deduced in closed form 

directly from the data, but are inferred in some approximate or iterative manner by means of the 

data moderated by other specifications and assumptions. 

 

 The Nature of the Rasch model 

 

The basic unidimensional Rasch model postulates that the data are the outcome of a stochastic 

process governed by a linear combination of parameters.  A general form of the model is: 

 

where 

Bn is the ability of subject n, 

Di is the difficulty of item i, 

 Cj is the severity of judge j, 

Fk is the step calibration, the difficulty of the step up from category k-1 to category k, of the ordered 

rating scale, denoted by successive integers in the interval l,h. 

 

This can also be expressed as: 
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Fl, the step calibration into the bottom category, is a multiplier in every term, so cancels out.  It is 

conventionally reported as 0.  Nevertheless, it is a convenience to retain it in estimation because 

setting Fl to a large enough negative value prevents computational overflows on exponentiating.  

Such values may cause underflows, but these can be replaced by zeroes with minimal loss in 

estimation precision. 

 

Were the model parameters to be known, then the probability of observing any particular datum 

would also be known.  The probability of observing datum, Xnij, in category x is given by (2) above. 

 The expected value of any datum, Enij, is: 

This has a monotonically increasing ogival form when the rating scale structure, {Fk}, is held 

constant, and the sum of the other parameters is allowed to change.  The local slope of the ogive is 

determined by the {Fk}.  This ogive can be approximated by a logistic ogive with slope determined 

by the {Fk}. 

 

For any parameter, e.g., n, the marginal score, Rn is the sum of all observations modeled to be 

generated by n: 

 

Though this is discrete, it has an ogival form as Bn varies, and can also be approximated by a 

logistic ogive of suitable slope. 

 

Following Fisher (1922), the likelihood of the data, L, is the product of the probabilities of the data 

points: 

 

 

 An Overview of Estimation Methods 

 

For many purposes, simple graphical techniques provide useable, if rough, estimates.  Georg Rasch 

(1960, Ch. VI) demonstrates how plotting logistic transformations of success frequencies permits 

the drawing of trace lines by eye.  These provide estimates of Rasch measures and support an 

investigation into measure accuracy.  When empirical raw-score-based item characteristic curves 

are available, logistic transformations of both axes, i.e., log(right/wrong), yields plots equivalent to 

those produced by G. Rasch. 

 

A numerical operation, equivalent to drawing plots, is the method of iterative proportional fitting 

applied to the cells of a data matrix (Kelderman and Steen, 1988).  This is helpful when the logistic 

form of the Rasch model is reparameterized as a log-linear model, so that each cell contains the 

count of occurrences of a particular response string.  Some estimation methods for log-linear 

versions of the Rasch model are addressed in Kelderman (1984). 
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The parameters of log-linear models can be estimated with standard statistical software.  Thus such 

software can be used to estimate the parameters of Rasch models, but this approach has proved of 

limited utility.  Rasch models, in log-linear form, often have hundreds of parameters and so 

overwhelm the software's computational capacity.  Further, many of the cells contain incidental 

zeroes, because particular response strings did not happen to be observed.  If missing data are 

permitted in response strings, estimation with standard statistical software becomes virtually 

impossible. 

 

Most estimation methods employ some form of the method of maximum likelihood.  The goal of 

this method, due to Fisher (1922), is to discover the parameter values which maximize the 

likelihood of the data, under whatever constraints the analyst imposes.  An advantage of the method 

is that, in general, a second derivative of the likelihood function provides a standard error for the 

estimate. 

 

The choice of constraints optimizes certain aspects of the estimation process or the estimates 

themselves, but always at a cost.  For instance, there is the ideal of estimation consistency.  A 

consistent estimation procedure produces estimates that asymptotically approach their latent values 

as the size of the data set increases. This might appear to be an essential feature of any estimation 

procedure, but it is not.  First, estimation procedures which are consistent according to one method 

of increasing the data set, can be inconsistent according to another.  Second, the inconsistency may 

be so small as to have no practical implications.  Third, the inconsistency in any finite data set, 

termed "statistical bias", may be correctable.  On the other hand, insisting on estimation consistency 

may prevent estimation under specific conditions, e.g., in the presence of missing data. 

 

In nearly all estimation methods, extreme (zero and perfect) marginal scores imply infinite 

parameter values and so are inestimable.  Accordingly, data corresponding to extreme scores must 

be eliminated before estimates are produced.  There are separate estimation techniques for imputing 

reasonable measures to extreme scores, once the measures for non-extreme scores have been 

estimated. 

 

Estimation methods are classified here according to several major considerations.  (i) Is estimation 

conceptualized as proceeding datum by datum, or at the marginal (raw score per parameter) level?  

(ii) Are all parameters estimated or are some conditioned out of the estimation?  (iii) Are 

parameters free or are they modeled as part of a distribution? 

 

 Estimation datum-by-datum 

 

A Rasch model resembles a simple form of a "transition odds" or "adjacent logit" logistic (logit-

linear) regression model.  George Udny Yule (1925) and Joseph Berkson (1944) suggest methods 

for estimating the parameters of a logistic curve.  Several methods of their are generally applicable. 

 These methods are generally robust against missing data,  

 

I. Gaussian least-squares. 

This estimation method minimizes the sum of the squares of the differences between what is 

observed and what is expected across the data, D.  The function to be minimized, F, is: 
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This must be minimized for all parameters simultaneously.  From the perspective of a particular 

parameter, say Bn, the minimization occurs when: 

where Vnij the model variance of an observed rating about its expectation, is 

The minimization condition for the rating scale parameters {Fk} is more complex, but tractable. 

From the Rasch measurement perspective, a drawback to this method is that different response 

strings with the same total raw score produce different measures. 

 

II. Minimum chi-square. 

In contrast to the previous method which minimizes numerical distances on the ordinal scale, the 

minimum chi-square method maximizes the fit of the data to the Rasch model.  Consequently, 

outlying unexpected observations (such as coding errors) are more influential in the minimum chi-

square approach and, again, the same marginal score can produce different estimates.  The function, 

F, to be minimized for all parameters simultaneously is: 

 

III.Pairwise estimation. 

Since the Rasch model is a log-odds model, an attractive approach is to use the relative frequencies 

of observations in the data to estimate the parameters.  Suppose that two persons, m and n, are 

judged by the same judges on the same items.  Cxy is the number of times that subject m is rated in 

category x in the same circumstances that subject n is rated in category y.  Similarly for Cyx. Then, 

an estimate of the difference in ability between m and n is given by the paired comparison 

Following this approach, one data set can yield many different estimates of the relative ability of the 

same pair of subjects, and also many different estimates of the relative abilities of those subjects to 

other subjects.  Further, some of these estimates may involve very few observations or even 

incidental zeroes. 

 

The resolution of these contradictions is to combine the paired comparisons into a likelihood 

function (Wright & Masters, 1982) which is maximized when the parameter estimates 

simultaneously satisfy the relationship 
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Here the summation over m includes every pairing in the data for every m for which Cxy and Cyx are 

both non-zero.  In this summation, observations can be used multiple times.  Consequently the 

standard errors provided by the second derivative are too small, roughly in proportion to the square-

root of the average number of times each observation is used. 

 

In this method, one set of parameters, here the subjects, are estimated.  Then another set is 

estimated using the pairwise method and the two sets of estimates are aligned on one measurement 

continuum.  Alternatively, the pairwise estimates are set as fixed values (anchors), and another 

method is used to estimate the other parameters. 

 

 Marginal Estimation without Distributional Assumptions 

 

In marginal models, identical total raw scores, obtained under the same conditions, estimate 

identical Rasch measures, regardless of the specifics of the response string.  This accords with 

Fisher's (1922) concept of sufficiency, but has been deemed counter-intuitive by empiricists. In 

general, however, any argument proposing that getting a hard item unexpectedly correct merits a 

higher measure can be offset by an equivalent argument that getting an easy item unexpectedly 

wrong merits a lower measure. 

 

Item Response Theory (IRT) models generally require assumptions about the distribution of the 

latent parameters in order to be estimable.  Rasch parameters, however, can be estimated with or 

without distributional assumptions regarding the parameters.  There is one distributional 

specification, however, that is deemed to hold across these estimation methods.  The unmodeled 

part of each datum, the residual difference between the observed and the expected values, is 

specified to be normally distributed, when the residual is standardized by its own model variance. 

 

IV. Joint maximum likelihood estimation (JMLE). 

Leading directly from Fisher sufficiency, and also from Gaussian least-squares, this method 

produces estimates for which the observed and expected marginal scores coincide.  No parameters 

are conditioned out, so the method is also termed "unconditional."  Though these estimates are 

independent of the computational details of the method used to obtain them, the usual approach is 

that of Newton-Raphson iteration.  The estimation equation to produce a better estimate Bn' of the 

previous estimate Bn is: 

 

This estimation method has proved robust against missing data, and also allows easily the 

incorporation into one analysis of data generated by variants of the Rasch model (dichotomous, 

partial credit, rating scale, etc.) 

 

A long-standing criticism of this method is that it is prone to noticeable estimation bias with short 

tests.  For instance, if a two item dichotomous test were given to a sample of persons, the estimated 

difference between the item measures according to JMLE would be twice that estimated by the 

pairwise estimation method.  In practice, however, this bias has few implications because the 
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relative ordering and placement of the estimates is maintained.  When JMLE is used to estimate 

measures from paired comparison data a correction factor of 0.5 removes the statistical estimation 

bias. 

 

JMLE is amenable to pre-set (fixed, anchored) parameter estimates, so that it is often used to 

estimate those parameters which have been left unestimated by other estimation methods. 

 

V.Conditional Maximum Likelihood Estimation (CMLE). 

This methods capitalizes on the proposition that identical person raw scores produced under 

identical conditions imply identical measures, but avoids actually estimating those measures.  This 

results in a method with minimal estimation bias and well-defined standard errors, but which is 

computationally intensive and generally intolerant of missing data. 

 

The minimal estimation bias results from the very slight probability that a sample of respondents, 

whose measures correspond to the estimated parameters, would obtain an extreme score on a test 

item.  If a large sample of respondents is obtained, then this probability is effectively zero. 

 

In this method, the relevant probabilities that form the basis for the estimation process are 

conditional probabilities that build on the simple form of the Rasch model.  First, the probability of 

every possible response string that generates a particular score must be estimated.  The sum of these 

is the denominator.  The numerator is the sum of the probabilities of those response strings (which 

produce the same raw score) in which the response to a specified item has a specified value.  Since 

this division eliminates the parameter estimate corresponding to the raw score, the reference 

parameter estimate for the score group can be set to zero or any value convenient for computational 

purposes.  Nevertheless, the long sums of exponentials that inevitably result can cause severe 

computational problems involving loss of computational precision and exponential overflow and 

underflow.  Improvements in computer hardware and more sophisticated numerical methods have 

aided CMLE (Verhelst and Glas, 1995), but it is still impractical in most instances for long tests.  

An outline of the estimation method is shown in Wright & Masters (1982), Chapter 4. 

 

 Marginal Estimation with Distributional Assumptions 

 

Distributional assumptions regarding some or all of the parameters can be usefully employed in a 

number of situations to simplify computation or even make estimation possible.  If the 

distributional assumption seriously mismatches the latent parameter distribution, then severe 

estimation bias may be introduced. 

 

VI.Marginal Maximum Likelihood Estimation (MMLE). 

MMLE imposes a distribution function on the subject parameters.  The simplest function is a 

normal distribution (paralleling IRT estimation).  More sophisticated functions are also employed 

such as multivariate normal distributions based on demographic variables (Adams et al., 1977) and 

empirical-Bayesian distributions. 

 

MMLE can surmount several obstacles at which other estimation methods balk.  First, it permits the 

estimation of sample measure characteristics even when there is insufficient information to produce 

meaningful estimates for individuals within the samples.  In particular, extreme scores, very short 
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response strings and missing data can be easily managed.  Second, it bypasses an analytic step when 

the intention is not to measure individuals, but to summarize estimates.  Third, it supports forms of 

the Rasch model beyond the unidimensional (Wu et al., 1998). 

 

MMLE produces estimates for the discrete parameters, usually corresponding to item difficulties 

and rating scale structures, such that their observed and expected marginal scores coincide, under 

the condition that the distribution of the other parameters has the required form. 

 

VII. Normal Approximation Algorithm (PROX). 

There is a convenient arithmetical relationship between the unit-normal ogive and the logistic 

ogive.  Berkson (1944) takes advantage of it for bio-assay calculations.  Cohen (1988) derives 

Rasch model estimation equations for dichotomous data from it.  Wright & Stone (1987, Chap. 2) 

use Cohen's algorithm to demonstrate the estimation of Rasch measures by hand. 

 

The relationship between the ogives is specified as: 

where Ψ is the logistic function and φ is the normal cumulative function  The standard equating 

value of 1.7 minimizes the maximum difference between the functions across their whole range 

(Camilli, 1994).  Linacre (1997) suggests 1.65 as a better equating value for Rasch use. 

 

When dichotomous data are complete and the parameters of each facet approximate a normal 

distribution, then non-iterative estimation equations are: 

 

 

 

By convention, ΣDi≡0 establishes the local origin of the measurement scale.  In practice, CD is 

chosen so that ΣDi=0.  In principle, CD=ΣBn.  Departure of CD from ΣBn indicates mismatch 

between the empirical and PROX-specified parameter distributions. 

 

XB and XD are expansion factors to adjust for sample spread and test width. 
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where SB and SD are the population standard deviations given by 

 

 

Linacre (1994) derives PROX estimation equations for missing data.  Linacre (1995) extends 

PROX to polytomous data. 

 

VIII. Items two-at-a-time. 

When tests are short, many subjects obtain extreme scores.  These introduce an unquantifiable 

amount of bias into summary statistics.  The focus of measurement, however, may not be the 

subjects, but the samples to which they belong.  When subjects are regarded as normally 

distributed, Wright (1998b) suggests estimation equations for the sample mean and standard 

deviation from the responses of subjects to pairs of items. 

 

 ------------------- 

 Table 1 about here 

 ------------------- 

 

Imagine that a large sample of people have taken two dichotomous items, A and B, approximately 

as the Rasch model predicts.  Table 1 is the tabulation of their scored responses.  According to the 

Rasch model, the difference between the item difficulties is estimated directly by 

 

If we assume that the sample is normally distributed, then we can estimate the sample mean and 

standard deviation.  The sample mean ability is relative to the average difficulty of the two items. A 

simulation study reported in Wright (1998b) suggests the following estimator: 
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An estimator for sample standard deviation is: 

 

 Estimating Extreme Scores 

 

Under strict Rasch model conditions, extreme (zero and perfect) scores correspond to infinite  

measures.  Here, infinite has the meaning of indefinite, any value outside the measurement range of 

the test.   Consequently, under most estimation methods, the response vectors corresponding to 

extreme scores are dropped from the analysis.  In many situations, however, measures must be 

reported for extreme scores, or the measures corresponding to extreme scores must be included in 

summary statistics. 

 

There are two approaches to imputing measures for extreme scores.  The first approach is to 

consider extreme scores to be part of a measure distribution.  This requires an estimation method, 

such as MMLE, that estimates at the sample, rather than individual, level.  The second approach is 

to apply some reasonable inference about the nature of the extreme score, and use this to estimate a 

measure. 

 

Wright (1998a) suggests nine bases for choosing a measure corresponding to an extreme score.  He 

concludes that, for dichotomous data, reasonable measures for extreme scores are between 1.0 and 

1.2 logits more extreme than the measures for the most outlying non-extreme scores.  For 

polytomous data, measures corresponding to scores between 0.25 and 0.5 score-points more central 

than the extreme scores can be usefully imputed as the extreme measures. 

 

 Estimation Error 

 

A recurring theme in the literature of the Rasch model is estimation error.  No estimation technique 

can guarantee to recover the measures of the generating parameters, even when the data fit the 

Rasch model.  The difference between the estimate and the generators is termed estimation error.  

There are three main sources of estimation error, deficiencies in the theoretical properties of the 

estimates, deficiencies in the implementation of the estimation algorithm and mismatches between 

the distribution of the data and the assumptions of the estimation algorithm. 

 

Some techniques could recover the generators, in theory, if they were provided infinite data of the 

right kind.  For instance, the "two-at-a-time" and pairwise estimation techniques would recover the 

exact measure difference between items, given the responses of an infinite number of on-target 

persons under Rasch model conditions.  Such estimation techniques are termed "consistent".  
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Though a desirable property, consistency is not of practical concern. 

 

A theoretical deficiency in most estimation methods causes some degree of estimation bias, which 

can noticeably affect measures estimated from short tests or with small samples.  Even then, the 

bias can usually be easily corrected (Wright, 1988).  An example is the correction of bias in 

measures resulting from the use of JMLE for analyzing measures from paired-comparison 

observations (Linacre, 1984).  Under Rasch model conditions, estimation bias is due to the 

inclusion of the possibility of extreme score vectors in the computations of the estimation 

algorithms, even though they must be eliminated from the data (or other arbitrary constraints 

introduced), because they produce infinite parameter estimates. 

 

The bias in JMLE is chiefly caused by the likelihood of persons obtaining extreme scores.  Linacre 

(1989) derives a JMLE-based estimation algorithm (XCON) which overcomes this deficiency, but 

there has been no demand, as yet, to implement it in a generally accessible way.  CMLE is relatively 

bias free, because person extreme scores are eliminated from the estimation space, and there is only 

a remote possibility of an extreme score for an item. 

 

Deficiencies in implementing estimation algorithms are most apparent with CMLE.  Computations 

of the likelihoods of every possible response string that generates each observed raw score is 

required.  This is a large computational load and, worse, involves the accumulation of many small 

numbers.  Loss of numerical precision can result, leading to error in the estimates. 

 

Mismatches between the distributional assumptions of the estimation algorithm and the data can 

skew MMLE and PROX estimates.  PROX capitalizes on the normal distribution, so that good 

estimates will not be obtained with a highly skewed sample, such as those found in many clinical 

situations.  MMLE can use more sophisticated methods to model the observed parameter 

distribution, but the match is always approximate. 

 

 Standard Errors of Measures 

 

It is impossible to obtain point-estimates of Rasch parameters.  Every Rasch measure is to some 

degree imprecise.  This imprecision is usually reported as a standard error.  For MMLE, it may be 

reported as a series of plausible values, intended to report a more complex error distribution, but, 

for practical purposes, even these can be summarized by a mean (corresponding to the estimate) and 

a standard deviation (corresponding to the standard error). 

 

The algorithm to compute the standard error is derived from the properties of the estimates or is a 

by-product of the estimation method.  The pairwise standard error is less well-defined than those of 

the other estimation methods because of the data-dependent reuse of observations in estimating 

observations.  Correcting for the degree of data reuse results in serviceable standard errors. 

 

All estimation methods produce estimates with standard errors of about the same size, because they 

are obtained from data containing the same information.  In general, the more observations in which 

a parameter participates, the smaller the standard error of its estimate.  The information in an 

individual observation is most influenced by the targeting of the parameters that generated the 

observation and the number of categories in the relevant rating scale.  Covariance in the data 
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reduces precision and so inflates the standard errors, but rarely to the extent that it would lead the 

analyst to a substantively different conclusion about the quality of the measures. 

 

Regardless of the estimation method, there are four conventional ways of reporting Rasch standard 

errors (Wright, 1995).  Standard errors can either be local or general.  They can also be ideal or real. 

 Local standard errors are computed relative to the estimate of some particular item on the test 

(usually the first one).  This reference item has no standard error.  Choice of a different reference 

item changes all the standard errors.  This makes the standard errors difficult to interpret and 

awkward to transport to other contexts. 

 

General standard errors are computed as though all other parameters are known, i.e., as though their 

estimates are point-estimates.  Converting from general to local standard errors is merely a matter 

of choosing a reference item, and then computing joint standard errors between that reference item 

and all other items.  The general standard errors have the virtue that they are easy to interpret and 

transport to other contexts. 

 

Ideal standard errors are reflect the highest possible precision obtainable with data like those 

observed.  These "best case" values are the smallest possible, estimated on the basis that the data fit 

the Rasch model.  Any idiosyncracies in the data are regarded merely as evidence of the stochastic 

nature of the model.  These "model" standard errors produce the highest possible estimates of test 

reliability. 

 

Real standard errors reflect the most imprecision. These "worst case" values are obtained on the 

basis that all idiosyncracies in the data are contradictions to the Rasch model.  These values will 

produce the lowest reasonable estimates of test reliability.  As misfit in the data is brought under 

control, the real standard error approaches the ideal. 

 

 Implementations of the Estimation Methods 

 

Rasch estimation methods are rarely implemented directly by the analyst, except perhaps for the 

estimation of person measures when item difficulties are known (Linacre, 1996, 1998).  Instead, 

analysts rely on available computer programs. 

 

To illustrate the similarities between the estimates obtained by different estimation approaches, five 

computer programs were employed.  RUMM (Andrich et al., 1997) implements pairwise 

estimation.  Quest (Adams & Toon, 1994) and Winsteps (Wright & Linacre, 1991) implement 

JMLE.  ConQuest (Wu et al., 1998) implements MMLE.  Lpcm-Win (Fischer, 1998) implements 

CMLE. 

 

Though the intention was to analyze the same data set, representative of actual clinical data, with all 

5 programs, this proved impossible with the versions of the programs available to the author.  

Instead, two data sets were used.  One data set comprised 16 items and 156 persons.  The items 

were polytomous with up to 4 categories.  The data set included extreme scores and missing data.  It 

was provided as a sample data set with the RUMM program.  Measures were estimated from this 

data set with ConQuest, Quest, RUMM and Winsteps.  A second data set was constructed from this 

data set.  It comprised 15 items and 156 persons.  There were no extreme scores nor missing data.  
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Measures were estimated from this data set with Lpcm-Win, ConQuest and Winsteps. 

 

Each computer program was instructed to produce estimates in accordance with the Rasch partial 

credit model, but using the program's own default settings, as far as possible.  Every estimation 

process was continued to convergence.  Item, rating scale and person estimates were produced, to 

the extent each program allowed. 

 

On inspection of program output, it was seen that item difficulties and rating scale (partial credit) 

estimates were reported in such different ways that simple comparison was not possible.  It also 

emerged that there were two ways of reporting person measures, either case-by-case or for all 

possible non-extreme scores.  The information provided by these two ways is combined for this 

discussion.  Since most programs did not attempt to estimate measures corresponding to extreme 

scores, these are not considered here. 

 

 ------------------- 

 Figure 1 about here 

 ------------------- 

 

Figure 1 depicts the person measures produced by four of the programs on the first data set.  

Though the programs themselves adopt different criteria for establishing the local origin of the 

measurement scale, all measures are equated to a common local origin in the Figure. Winsteps was 

run in its default mode which does not attempt to correct for JMLE estimation bias.   This bias 

causes its estimates (represented by the diagonal) to be slightly wider (less central) than those of the 

other programs.  It appears that Quest, also using JMLE, is correcting for estimation bias.  The 

standard errors of the measures in this plot are .4 logits.  All four programs, and so all four 

estimation methods, are producing substantively and statistically the same measures. 

 

 ------------------- 

 Figure 2 about here 

 ------------------- 

 

Figure 2 plots person measures estimated from the second data set.  At the lower end, the estimates 

coincide.  For these estimates, standard errors are again 0.4 logits.  At the upper end, differences are 

seen.  Winsteps produced JMLE estimates without correction for estimation bias, represented by 

the diagonal line, the highest estimates.  The correction for estimation bias, (Test length - 1)/ (Test 

length), was applied to the Winsteps measures. These are plotted as asterisks, which appear as the 

next lower (more central) estimates.  The Lpcm-Win (CMLE) measures are next, plotted as X.  The 

ConQuest (MMLE) measures are the most central, plotted as +.  The range of estimates of the most 

extreme person in the top right of Figure 2 is .7 logits, but here the standard error is 1.0 logits.   

Again the estimates are statistically identical.  Confusion might result, however, if measures from 

one program were interspersed with those from another. 

 

 Conclusion 

 

Each Rasch estimation method has its strong points and its advocates in the professional 

community.  Each also has its shortcomings.  In practice, all methods produce statistically 
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equivalent estimates, though precautions need to be taken when estimates produced by different 

computer programs or estimation methods are to be placed in one frame of reference.  Preparation 

of this paper reinforced the perception that the structure of the data to be analyzed and the nature of 

the information required from the output of the analysis are primary in the selection of a Rasch 

estimation computer program.  The theoretical properties of the estimates have been shown to be a 

minor consideration. 
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 Table 1.  Counts on a Two-Item Test 

  Item B  

 

Totals: 

  Right: 1 Wrong: 0  

Item A Right: 1 S11 S10 TA1 

 Wrong: 0 S01 S00 TA0 

Totals: TB1 TB0 T 
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 Figure 1.  Person estimates from ConQuest, Quest, RUMM and Winsteps 
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 Figure 2.  Person estimates from ConQuest, Lpcm-Win Winsteps 


