## Chapter 4: The BLOT Test

You will need to read the text of the book to understand these examples. Official authors' website: Bond & Fox
Winsteps numerical results may differ somewhat from those in Bond & Fox due to differences in estimation procedures.

B&F BLOT data p. 39

Only the start of this dataset is shown on p.39. The entire dataset is obtained from www.facebook.com/ApplyingTheRaschModelBondFox.

Bond's Logical Operations Test data.

The original data set contains 35 items and 150 persons, but MINISTEP is limited to 25 items and 75 persons. So the last 10 items and 75 persons are omitted from a MINISTEP analysis. They somewhat change the reported results.

These data set up for Facets are shown below.

Highlight with your mouse from here >

```Title = "B&F BLOT data: 35 items"
Item1 = 5        ; Response to first item is in column 5
NI    = 35       ; 35 items.
Name1 = 1        ; Person identifier starts in column 1
Namelength = 3   ; Person identifier is 3 columns wide
Xwide = 1        ; Each observation is 1 columns wide
Codes = 10       ; valid codes are "1" and "0"
Total = Yes      ; show total raw scores
Chart = Yes      ; produce across-pathway picture
Mnsq  = No       ; use Standardized fit statistics
Iafile=*
4 0              ; Item 4 exactly at 0 logit point.
*
Converge=L       ; Convergence decided by logit change
Lconverge=.00001 ; Set convergence tight because of anchoring
&End
01 Negation (to negate identity) ; Item labels courtesy of Trevor Bond
02 Reciprocal (to negate identity)
03 Implication
04 Incompatibility
05 Multiplicative compensation
06 Correlations
07 Correlations
08 Correlations
09 Conjunction
10 Disjunction
11 Conjunctive negation
12 Affirmation of p
13 Reciprocal exclusion
14 Probability
15 Reciprocal implication
16 Reciprocal (to negate identitiy)
17 Identity (to negate reciprocal)
18 Negation (to negate correlative)
19 Reciprocal (to cause disequilibrium)
20 Negation (to cause disequilibrium)
21 Correlative + negation > equilibrium
22 Reciprocal + negation > disequilibrium
23 Correlative + identity > disequilibrium
24 Coordination of two systems of reference
25 Complete negation
26 Complete affirmation
27 Negation of p
28 Non- implication
29 Affirmation of q
30 Equivalence
31 Negation of q
32 Negation of reciprocal implication
33 Probability
34 Coordination of two systems of reference
35 Coordination of two systems of reference
END NAMES
001 11111111110110101101011111111011111
002 11111111111111111111111111101111111
003 11010111111111011111011111101011111
004 11111111111111111111101111111111111
005 11111111111101111111011111111111111
006 11111111111110111101011111111111111
007 11111111111101111111011111111111111
008 11111111111111111111111111101011111
009 11111111111111111111111101111111111
010 11111111111111111111111111111001111
011 11111110111111111111111111111111111
012 11011111011111011111011111000110111
013 11111110111111111111011011111101111
014 11111110111111111111111111101001111
015 11111111111111011111010111101111111
016 11111111111101111101111111111111111
017 11111111111101111101111111111111111
018 11111111111101111111011111101110111
019 11111110111111111111111111111111111
020 11111111111111111110011111111110111
021 11101110111111111111111111101110111
022 11001111011101010111011111111111111
023 11111111111111111111111111111111111
024 11111111111111111111111111111101111
025 11111111111111111111011111111111111
026 11111111011111011111111110110010111
027 11111111111111111111111111111111111
028 11101111111111111111001101111011111
029 11111111111101111111110110111010111
030 11111111111111111101010110101111111
031 11111111111101111111011111111111111
032 00101110111111110111011111101101111
033 11111111011111011111011011111110111
034 11111111111111111111111111101111111
035 11111111111111111111111111111101111
036 01111111111101010101011010111001101
037 11011111111101111111011111111011111
038 11111111111110111111011111111011111
039 10011111101111011011011111111111111
040 11111111110111111111111111101011011
041 11111111110111001111011111101001111
042 11011111111111101111111111111101100
043 11111111111111111011111101101110111
044 11011111000110000111101011101100111
045 00111111111111111111010100111010111
046 11111111111111111111111111111111111
047 11111111011111110111110101111111111
048 11111110011101011111111111101100011
049 01110110110101111111011110110111111
050 11111111111101111111011101111111111
051 10010110110101101111110111111110011
052 11001101101101011111010101111011111
054 11111111110111011111011111111110111
055 11111111111101011111111111111111100
056 11111111110111111101011111101111111
057 11011110111101111110111111001011111
058 11001110111111011111011111111011111
059 11111111111111111111011111111111111
060 11111111111111011101011101110010111
061 11001110010111110111011111101110111
062 11110110111101111011110110101001111
063 11011110110110111111011111111110111
064 11111111111111011111011111111001111
065 11111111111111110011010111111111111
066 11111111111111111111011011111011011
067 11011111101110011111011011101011100
068 11111111111111011110011001111010100
070 11101101111101001001010101101111100
072 11011111010101111111011110111011111
073 11011111100101101111011101101111111
074 11101111111111111111011111101110111
075 10111111111111010001111100111011000
076 11011111001100111110010111111011111
077 11111111111101101111010111111011111
078 11000100111111011111011100101001111
079 00111111110111011111011100101111011
080 11111110101111010101110011111111100
081 11111111011111100111111111111111111
082 11011111111111111111111101111111111
083 11111111111111111111111111101111111
084 11111111111111111111011111111111111
086 00011111011101011110011110100011111
087 11011100111111011111111000101110100
088 11111111010110111111111111101111111
090 11111110111101100101011110101010111
091 11111101100101111111001100101000111
092 11111111111111111111011111111111111
093 11111111101101010101011111100011111
094 11111111111111111101111110101110111
095 01111111011111010011010101110011100
096 11011110111111111001011110001100010
097 11111111010101011101011100101110111
098 01101010000100011110010000100100011
099 11011111111111000101010110100110011
100 11100111111111001111011001011011111
101 11111111111111111111111011111111111
102 11111111111101111111111111111111111
103 11101111111101101001000101001000111
104 11101101111101111001011111101001011
105 11011100110110100101011110101101110
106 11011110011101110011010110110110111
107 11010110101101100001010111111011111
108 11010111011101000011011001010100111
109 11101010011111111111011111111110111
110 11111100111111111101110000101110011
111 11111110100101111101011001101000000
112 11011100110101101010001100010110111
113 00011111111101010010011111111011011
114 11000110001111110011111110101111111
115 11101110111111111111100000100111111
116 01011111111101001100011110000010111
117 00001110100101010111011011101111000
118 10001100010010010000010000010000111
119 00000100000001010001000010000000000
120 11111111110111111101011011111111111
121 10100111010111000001011001101110011
122 11001100100111011111011010101100100
123 10101010011111000001010010101011111
124 11111111101110111111010100101110111
125 11111101111101011101011100101100111
126 10011110001111111000010100111110100
127 11111111101100110101011110111011011
128 11111110111111001111010110101011111
129 11111110010111010001110111101011010
130 00010110110011110101111000001000111
132 10111111010101111111110111111000011
133 11111101101111111111011000101100110
131 00111100011110011001110011100010101
134 11001100000111010000110000101100101
135 11010110001111010100000100100100011
136 11001111111100011011011000101010100
137 00011110011100110011110010101010011
138 11101110100001000000001010000010100
139 10111010101001010000001000100100100
140 11001110110101110111011000000010000
141 11101110001100010111110000110111110
143 01010110110001000000000010010010110
144 01000110000000010011010001001000100
145 11010100000101010101011001111001101
146 11001110111100000000010111101010111
147 01011100100110000000100000001100110
149 11111111111111101111110100100000101
150 11111111111111011111011111101111111
151 10000100000001000100100110000000010
152 00011101111101011011011010101010100
153 11111110010111111111010111001110111
154 11001000001001101111001100101010011
155 11011111111111111111111111101110111
156 01101110011100110101011001101100101
158 11001101111101110111100110101111111
```

< to here. Then Copy.

Start Ministep.
Do not answer the "Control File Name?" question.
Go immediately to "Edit" pull-down menu.
Click on "Edit/Create File with WordPad"
"Paste Special" as "Unformatted Text" what you just copied above.

It should look exactly like the block above.

"Save as"
Go to the C:\WINSTEPS\examples directory
File Name: BLOT.txt
Save as type: Text document
"Save"
"You are about to save the document in a Text-Only format ..."
Click "Yes"

Click on Ministep or Winsteps on the bottom of your screen
"Control File Name?" displays.
Press the Enter key
Find BLOT.txt in the file list.
Click on it.
Click "Open"

"Report output file name ..."
Press the Enter key

"Extra specifications ..."
Press the Enter key

Ministep runs.
Ministep reports "Measures constructed"

B&F Figure 4.1 paralled p. 40

Click on the "Output Tables" pull-down menu
Click on "13. ITEM Measure". The Table displays.
Scroll down to Table 13.2. This approximates Fig. 4.1
The items are in measure order along the pathway, see the left-hand column.
They spread across the pathway in the Infit Standardized central column.

B&F Figure 4.2 p. 42

Click on the "Output Tables" pull-down menu
Click on "12. ITEM Map". The item map displays.
Table 12.1 matches Fig. 4.2, but with 25 items for MINISTEP.

B&F Table 4.1 p. 44

Click on the "Output Tables" pull-down menu
Click on "14. ITEM Measure". The Table displays.
Table 14.1 matches Table 4.1, but with 25 items for MINISTEP.
Item 4 has a measure of ".00A". This is because it was anchored at 0, and so defines the origin of the scale.
"ZSTD" corresponds to "t". ZSTD means "Standardized like a z-statistic". For practical purposes, "t" and "z" statistics are equivalent.

B&F Summary of Item Estimates p. 46

Click on the "Output Tables" pull-down menu
Click on "3.1 Summary statistics". The Table displays.
Scroll down to "SUMMARY OF 35 MEASURED (NON-EXTREME) ITEMS" Table 3.1 matches, but with 35 items.
If there were items with zero or perfect scores, there counts would be given at the bottom of Table 3.1

B&F Summary of Case Estimates p. 47

Scroll up Table 3.1 or
Click on the "Output Tables" pull-down menu
Click on "3.1 Summary statistics". The Table displays.

Since there are persons with maximum scores, two sets of summary results are displayed.
Look at the top set. They closely match B&F. This is the familiar "Test Reliability".

Note: The Winsteps instructions on p. 50 are conceptual.

BLOT data set up for Facets:

```Title = "B&F BLOT data: 35 items"
facets=2
models=?,?,D
noncenter=1
positive=1
residuals = blotres.txt  ; if you want to write out this file
labels=
1=Persons
1-158
*
2=Items
1-35
*
data=
001,1-35,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1
002,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1
003,1-35,1,1,0,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,1,1,1,1
004,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1
005,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
006,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
007,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
008,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1
009,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1
010,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1
011,1-35,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
012,1-35,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,0,0,1,1,0,1,1,1
013,1-35,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1
014,1-35,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,1
015,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,1
016,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
017,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
018,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,0,1,1,1
019,1-35,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
020,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1
021,1-35,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1
022,1-35,1,1,0,0,1,1,1,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
023,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
024,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1
025,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
026,1-35,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1
027,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
028,1-35,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,1,1,1,1,0,1,1,1,1,1
029,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,0,1,1,1
030,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,1,0,1,0,1,1,1,1,1,1,1
031,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
032,1-35,0,0,1,0,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1
033,1-35,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,0,1,1,1
034,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1
035,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1
036,1-35,0,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,1,0,0,1,1,0,1
037,1-35,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1
038,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1
039,1-35,1,0,0,1,1,1,1,1,1,0,1,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
040,1-35,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1
041,1-35,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,1,1,1,0,1,0,0,1,1,1,1
042,1-35,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0
043,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,1
044,1-35,1,1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0,1,1,1,1,0,1,0,1,1,1,0,1,1,0,0,1,1,1
045,1-35,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,1,1,1,0,1,0,1,1,1
046,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
047,1-35,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1
048,1-35,1,1,1,1,1,1,1,0,0,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,1,1
049,1-35,0,1,1,1,0,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,1,1
050,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1
051,1-35,1,0,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0,1,1
052,1-35,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,1,1,1,1,1,0,1,0,1,0,1,1,1,1,0,1,1,1,1,1
054,1-35,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1
055,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0
056,1-35,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1
057,1-35,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,1,1,1
058,1-35,1,1,0,0,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1
059,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
060,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,0,1,0,1,1,1
061,1-35,1,1,0,0,1,1,1,0,0,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,1,0,1,1,1
062,1-35,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,0,1,0,1,0,0,1,1,1,1
063,1-35,1,1,0,1,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1
064,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1
065,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1
066,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,0,1,1,0,1,1
067,1-35,1,1,0,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,1,0,1,1,1,0,0
068,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,0
070,1-35,1,1,1,0,1,1,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,1,1,1,1,1,0,0
072,1-35,1,1,0,1,1,1,1,1,0,1,0,1,0,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,1
073,1-35,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,0,1,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,1,1,1
074,1-35,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,0,1,1,1
075,1-35,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,1,1,1,1,1,0,0,1,1,1,0,1,1,0,0,0
076,1-35,1,1,0,1,1,1,1,1,0,0,1,1,0,0,1,1,1,1,1,0,0,1,0,1,1,1,1,1,1,0,1,1,1,1,1
077,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,1,1,1,1,0,1,1,1,1,1
078,1-35,1,1,0,0,0,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,0,1,0,1,0,0,1,1,1,1
079,1-35,0,0,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,0,1,0,1,1,1,1,0,1,1
080,1-35,1,1,1,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,0
081,1-35,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
082,1-35,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1
083,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1
084,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
086,1-35,0,0,0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,0,0,1,1,1,1,0,1,0,0,0,1,1,1,1,1
087,1-35,1,1,0,1,1,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,0,1,0,0
088,1-35,1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1
090,1-35,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,0,1,0,1,1,1,1,0,1,0,1,0,1,0,1,1,1
091,1-35,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0,1,1,1
092,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1
093,1-35,1,1,1,1,1,1,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,1,1,1,1
094,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1
095,1-35,0,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,0,1,1,0,1,0,1,0,1,1,1,0,0,1,1,1,0,0
096,1-35,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0,1,0
097,1-35,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1
098,1-35,0,1,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,1,1
099,1-35,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,1
100,1-35,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,1
101,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1
102,1-35,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
103,1-35,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,1
104,1-35,1,1,1,0,1,1,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,1,1,0,1,0,0,1,0,1,1
105,1-35,1,1,0,1,1,1,0,0,1,1,0,1,1,0,1,0,0,1,0,1,0,1,1,1,1,0,1,0,1,1,0,1,1,1,0
106,1-35,1,1,0,1,1,1,1,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1
107,1-35,1,1,0,1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0,1,0,1,0,1,1,1,1,1,1,0,1,1,1,1,1
108,1-35,1,1,0,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,1,1
109,1-35,1,1,1,0,1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1
110,1-35,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,1,0,1,1,1,0,0,1,1
111,1-35,1,1,1,1,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,0,0,0
112,1-35,1,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1
113,1-35,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,1,1
114,1-35,1,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1
115,1-35,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,1,1,1,1,1
116,1-35,0,1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,0,0,0,1,1,1,1,0,0,0,0,0,1,0,1,1,1
117,1-35,0,0,0,0,1,1,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0
118,1-35,1,0,0,0,1,1,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,1
119,1-35,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
120,1-35,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1
121,1-35,1,0,1,0,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,1,0,0,1,1
122,1-35,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,1,1,1,1,1,0,1,1,0,1,0,1,0,1,1,0,0,1,0,0
123,1-35,1,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,1,1
124,1-35,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,0,1,0,1,1,1,0,1,1,1
125,1-35,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,1,0,1,1,0,0,1,1,1
126,1-35,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0
127,1-35,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,0,1,1
128,1-35,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,0,1,1,1,1,0,1,0,1,1,0,1,0,1,0,1,1,1,1,1
129,1-35,1,1,1,1,1,1,1,0,0,1,0,1,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,0,1,1,0,1,0
130,1-35,0,0,0,1,0,1,1,0,1,1,0,0,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0,0,0,1,1,1
132,1-35,1,0,1,1,1,1,1,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,0,0,0,1,1
133,1-35,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,1,1,0
131,1-35,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,1
134,1-35,1,1,0,0,1,1,0,0,0,0,0,1,1,1,0,1,0,0,0,0,1,1,0,0,0,0,1,0,1,1,0,0,1,0,1
135,1-35,1,1,0,1,0,1,1,0,0,0,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,1
136,1-35,1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,0
137,1-35,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,1
138,1-35,1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0
139,1-35,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,0
140,1-35,1,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0
141,1-35,1,1,1,0,1,1,1,0,0,0,1,1,0,0,0,1,0,1,1,1,1,1,0,0,0,0,1,1,0,1,1,1,1,1,0
143,1-35,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,1,0
144,1-35,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0
145,1-35,1,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,1,1,0,0,1,1,0,1
146,1-35,1,1,0,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,1,0,1,0,1,1,1
147,1-35,0,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0
149,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,1
150,1-35,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1
151,1-35,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0
152,1-35,0,0,0,1,1,1,0,1,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0
153,1-35,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,0,1,1,1,0,1,1,1
154,1-35,1,1,0,0,1,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0,1,1
155,1-35,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1
156,1-35,0,1,1,0,1,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,1
158,1-35,1,1,0,0,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,1,1
```

Go to Top of Page
Go to Winsteps & Facets home Press Page

The Languages of Love: draw a map of yours!

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments, George Engelhard, Jr. & Stefanie Wind Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez
Winsteps Tutorials Facets Tutorials Rasch Discussion Groups

Coming Winsteps & Facets Events
May 22 - 24, 2018, Tues.-Thur. EALTA 2018 pre-conference workshop (Introduction to Rasch measurement using WINSTEPS and FACETS, Thomas Eckes & Frank Weiss-Motz), https://ealta2018.testdaf.de
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 27 - 29, 2018, Wed.-Fri. Measurement at the Crossroads: History, philosophy and sociology of measurement, Paris, France., https://measurement2018.sciencesconf.org
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 25 - July 27, 2018, Wed.-Fri. Pacific-Rim Objective Measurement Symposium (PROMS), (Preconference workshops July 23-24, 2018) Fudan University, Shanghai, China "Applying Rasch Measurement in Language Assessment and across the Human Sciences" www.promsociety.org
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

Our current URL is www.winsteps.com