EDFILE= edit data file

This permits the replacement of data values in your data file with other values, without altering the data file. Data values are in the original data file format, specified in CODES=. If specified as decimals, they are rounded to the nearest integers. Additional persons can be entered beyond those in DATA= or after END LABELS. Values can be in any order, but are more speedily process in person-entry order.

 

EDFILE= file name

file containing details

EDFILE= file name + file name + ...

multiple files

EDFILE = *

in-line list

EDFILE = ?

opens a Browser window to find the file

 

Suggestion: sort the data lines as "person-entry-number ascending" for faster processing.

 

Its format is:

EDFILE=*

person entry number

or
"person selection"

*

 

item entry number
or
"item selection"

 

replacement data value

Ranges are permitted for entry numbers: first-last.

 

Person and item selections must be in quotation marks " ", and follow the selection rules:

 

Selection rules:

Control characters match label or name. They start at the first column of the label or name.

?

matches any character

*

matches any string of characters - must be last selection character.

If * is in the first column, then every available person or item is selected.

A

matches A in the person label, and similarly all other characters except { }

{..}

braces characters which can match a single character: {ABC} matches A or B or C.

{.. - ..}

matches single characters in a range. {0-9} matches digits in the range 0 to 9.

{.. --..}

matches a single "-" {AB--} matches A or B or "-".

{~ABX}

omits persons or items which match A or B or X

@fieldname=

positions the next selection character at the start of the specified field

 

Example 1: In your MCQ test, you wish to correct a data-entry error. Person 23 responded to item 17 with a D, not whatever is in the data file.

 

EDFILE=*

23 17 D     ; person 23, item 17, data value of D

*

 

Example 2: Person 43 failed to read the attitude survey instructions correctly for items 32-56. Mark these missing.

 

EDFILE=* 

43 32-56 " " ; person 43, items 32 to 56, blanks are missing data.

*

 

Example 3: Persons 47-84 are to be given a rating of 4 on item 16.

 

EDFILE=* 

47-84 16 4 ; persons 47 to 84, item 16, data value of 4

*

 

Example 4: Items 1-10 are all to be assigned a datum of 1 for the control sub-sample, persons 345-682.

 

EDFILE=* 

345-682 1-10 1 ; persons 345-682, items 1 to 10, data value 1.

*

 

Example 5: Missing data values are to be imputed with the values nearest to their expectations.

 

a. Produce PFILE=, IFILE= and SFILE= from the original data (with missing).

b. Use those as PAFILE=, IAFILE=, SAFILE= anchor files with a data set in which all the original non-missing data are made missing, and vice-versa - it doesn't matter what non-missing value is used.

c. Produce XFILE= to obtain a list of the expected values of the originally missing data.

d. Use the EDFILE= command to impute those values back into the data file. It will round expected values to the nearest integer, for us as a category value.

 

EDFILE=*

17 6 2.6 ; persons 17, item 6, expected value 2.6, imputed as category "3".

*

 

Example 6: All responses to item 6 for males "M" in column 6 of person label are to be coded as "missing", character ".":

 

EDFILE=*

"?????M" 6 .

*

 

Example 7: We want to do Examples 1, 2, 3, 4, 5, 6 all at once to our dataset:

 

EDFILE=*

23 17 D     ; person 23, item 17, data value of D

43 32-56 " " ; person 43, items 32 to 56, blanks are missing data.

47-84 16 4 ; persons 47 to 84, item 16, data value of 4

345-682 1-10 1 ; persons 345-682, items 1 to 10, data value 1.

17 6 2.6 ; persons 17, item 6, expected value 2.6, imputed as category "3".

"?????M" 6 .

*

 

Example 8: We want person group X (in column 4 of the person label) except for subgroups 11, 24 (in columns 6, 7 of the person label):

PSELECT = "???X?{12}{14}"  ; this selects X and 11, 14, 21, 24

EDFILE=*

"?????14" "?" . ; convert 14 to missing data

"?????21" "?" . ; convert 21 to missing data

*

 

Example 9: Exceedingly unexpected responses are to be coded "missing". (It is easier, but not as exact, to use CUTLO= and CUTHI= to trim the observations).

 

Either
Extract into Excel the list of unexpected observations from Table 6.6 or Table 10.6.

Or
Output the XFILE= to Excel
Sort by unexpectedness (standardized residual)
Delete all rows except for the responses you want to code missing

 

Then
Rearrange the columns: Person Item
In the third column put the desired missing data code.
Copy-and-paste the three columns into a text file.
In your Winsteps control file:
EDFILE = (text file name)
Rerun the analysis

 

Example 9: All data in a separate EDFILE= data file.

 

NAME1 = 1

ITEM1 = 31

NI = (number of items)

CODES = ABCD

EDFILE= *

1 1 A

1 5 B

2 3 A

2 10 C

.....

*

&END

....

END LABELS

(list of person labels or nothing)

NAME1 = 1

ITEM1 = 31

NI = (number of items)

CODES = ABCD

EDFILE= eddata.txt

DATA = personlabels.txt  ; list of person labels

....

&END

....

END LABELS

 

and in another file, eddata.txt,

1 1 A

1 5 B

2 3 A

2 10 C

.....

 

Example 10: Item bank recalibration for computer-adaptive tests (CAT) or similar.

Here is a method is that maintains the accuracy of previously-reported person measures as much as possible:

1.collect up all the relevant data and format the data into a rectangular dataset or equivalent. EDFILE= is useful for this.

2.anchor all the persons at their report measures

3.anchor all items at their item-bank difficulties, and rating-scale structures (if polytomies) SAFILE=

4.analyze the dataset

5.the item displacements tell us which items have drifted by how much.

6.items with displacements of more than 0.5 logits, that are also bigger than the item S.E.s, are candidates for recalibration.


Help for Winsteps Rasch Measurement Software: www.winsteps.com. Author: John Michael Linacre

Just released in June 2017: Winsteps 4.0 with Table 45 Cumulative Plot

New: Masterchef Australia 2017: Rasch Measurement of Cooks with Table 45

For more information, contact info@winsteps.com or use the comment form below.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation download

State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

 

Forum Rasch Measurement Forum to discuss any Rasch-related topic

Click here to add your email address to the Winsteps and Facets email list for notifications.

Click here to ask a question or make a suggestion about Winsteps and Facets software.

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez
Winsteps Tutorials Facets Tutorials Rasch Discussion Groups

 


 

 
Coming Rasch-related Events
Sept. 27-29, 2017, Wed.-Fri. In-person workshop: Introductory Rasch Analysis using RUMM2030, Leeds, UK (M. Horton), Announcement
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Oct. 25-27, 2017, Wed.-Fri. In-person workshop: Applying the Rasch Model hands-on introductory workshop, Melbourne, Australia (T. Bond, B&FSteps), Announcement
Dec. 6-8, 2017, Wed.-Fri. In-person workshop: Introductory Rasch Analysis using RUMM2030, Leeds, UK (M. Horton), Announcement
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
April 13-17, 2018, Fri.-Tues. AERA, New York, NY, www.aera.net
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark
 


 

 
    Rasch is to social science measurement as Modere is to wellness and skincare products.
  1. based on sound scientific principles
  2. smart and effective
  3. constantly advancing as state-of-the-art
  4. rejecting harmful ingredients that appear attractive, but are actually toxic
  5. designed to benefit everyone