﻿ SFUNCTION= function to model Andrich thresholds with polynomials

# SFUNCTION= function to model Andrich thresholds with polynomials

By default, the structure or a rating scale (polytomy) is estimated from the data, and expressed as Rasch-Andrich thresholds. When the data are sparse, or the rating scale is long, there may not be enough observations to estimate every threshold securely. SFUNCTION= defines a smoothing function for estimating all the rating scale thresholds. If all the categories are not observed in the data, ISRANGE= defines the range of the category numbers.

Alternative approaches are described at Null or unobserved categories: structural and incidental zeroes, also at Unobserved and dropped categories.

 Modeling Rasch-Andrich Thresholds for unobserved and sparse categories Example: Olympic Ice-Skating, Exam15.txt. The rating-scale is from 0.0 to 6.0, renumbered 00 to 60 for Rasch analysis. The empirical data are from the Pairs Figure-Skating at the Salt Lake City Olympics.   Category frequencies: Possible categories: 0-60 = 61 categories Observed categories: 29, 30-59 = 30 categories Unobserved categories: 00-28, 30, 60 = 31 categories Analysis 1: Categories 29, 31-59 observed, renumbered 30-59. Estimated using the method of Wright, Masters (1982). CODES=     " 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44+            + 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59" NEWSCORE = " 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44+            + 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59" STKEEP=NO Category Probability Curves Item Characteristic Curves Red: Model, Blue: Empirical (with confidence bands) Analysis 2: Categories 29, 31-59 observed. Category 30 interpolated with Wilson (1991). CODES= " 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44+        + 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59" STKEEP=YES 1st moment (thresholds at central location). Categories 0-60. SFUNCTION=1 ; item thresholds are at item location. Threshold dispersion = 0. ISRANGE=* 1 0 60 ; 1 is item in the item-group: category range 0-60 * or SAFILE=* 0-60 0 ; all thresholds anchored at 0 * 2nd moment (thresholds with uniform dispersion) .  Categories 0-60  with Andrich, Luo (2003), Pedler (1987) SFUNCTION=2 ISRANGE=* 1 0-60 * 3rd moment (thresholds with dispersion and skewness). Categories 0-60  with Andrich, Luo (2003), Pedler (1987) SFUNCTION=3 ISRANGE=* 1 0-60 * 4th moment (thresholds with dispersion, skewness and kurtosis). Categories 0-60  with Andrich, Luo (2003),  Pedler (1987) SFUNCTION=4 ISRANGE=* 1 0-60 * ICCs for these and higher moments   The 4th moment (kurtosis, red line) models the smoothest ICC for the full range of the rating scale 0-60. The higher moments (SFUNCTION=5,6,...) do not add meaningfully to the red line of the 4th moment (kurtosis, SFUNCTION=4). Andrich, D. & Luo, G. (2003).  Conditional Pairwise Estimation in the Rasch Model for Ordered Response Categories using Principal Components. Journal of Applied Measurement, 4(3), 205-221. Pedler, P.J. (1987) Accounting for psychometric dependence with a class of latent trait models. Ph.D. dissertation. University of Western Australia. Wilson M. (1991) Unobserved or Null Categories. Rasch Measurement Transactions, 5:1, Wright B.D., Masters G.N. (1982) Rating Scale Analysis. MESA Press.

Help for Winsteps Rasch Measurement Software: www.winsteps.com. Author: John Michael Linacre

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments, George Engelhard, Jr. & Stefanie Wind Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez
Winsteps Tutorials Facets Tutorials Rasch Discussion Groups

Coming Rasch-related Events
April 10-12, 2018, Tues.-Thurs. Rasch Conference: IOMW, New York, NY, www.iomw.org
April 13-17, 2018, Fri.-Tues. AERA, New York, NY, www.aera.net
May 22 - 24, 2018, Tues.-Thur. EALTA 2018 pre-conference workshop (Introduction to Rasch measurement using WINSTEPS and FACETS, Thomas Eckes & Frank Weiss-Motz), https://ealta2018.testdaf.de
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 27 - 29, 2018, Wed.-Fri. Measurement at the Crossroads: History, philosophy and sociology of measurement, Paris, France., https://measurement2018.sciencesconf.org
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 25 - July 27, 2018, Wed.-Fri. Pacific-Rim Objective Measurement Symposium (PROMS), (Preconference workshops July 23-24, 2018) Fudan University, Shanghai, China "Applying Rasch Measurement in Language Assessment and across the Human Sciences" www.promsociety.org
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Sept. 3 - 6, 2018, Mon.-Thurs. IMEKO World Congress, Belfast, Northern Ireland www.imeko2018.org
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

Our current URL is www.winsteps.com