﻿ Table 22 Sorted observed data matrix - Guttman scalogram

# Table 22 Sorted observed data matrix - Guttman scalogram

(controlled by LINELENGTH=).

 Table 22.1 Sorted observed data matrix - Guttman scalogram   GUTTMAN SCALOGRAM OF RESPONSES: KID |ACT                          |1111112 1 221  121    22      |8920311251427634569784035    |-------------------------  2 +2222222222222222222222222  M ROSSNER, LAWRENCE F. 41 +2222222222222222222222212  F FATALE, NATASHA 34 +2222222222222222222222211  F PASTER, RUTH 17 +2222222222222222222222210  F SCHATTNER, GAIL 50 +2222222222222222222122111  M DOEPPNER, TOM 45 +2222222222222222222221200  F MCLOUGHLIN, BILLY  7 +2222222222222222220220220  M WRIGHT, BENJAMIN 16 +2222222222222222222111101  F BUFF, MARGE BABY 48 +2222222222222222212221100  M CHAZELLE, BERNIE 25 +2222222222222222212021101  F SEILER, KAREN 59 +2222222222222222212111020  F CLAPP, LB 18 +2222222222222222212102100  M ERNST, RICHARD MAX The observations are printed in order of person and item measures as a Guttman Scalogram, with most able persons listed first, the easiest items printed on the left. This scalogram shows the extent to which a Guttman pattern is approximated. See also Guttman Coefficient of Reproducibility. Table 22.2 Guttman scalogram of zoned responses     GUTTMAN SCALOGRAM OF ZONED RES KID |ACT                             |1111112 1 221  121    22       |8920311251427634569784035       |-------------------------     2 +2222222222222222222222222  M ROSSNER, LAWRENCE F.  41 +22222222222222222222222A2  F FATALE, NATASHA    34 +22222222222222222222222AA  F PASTER, RUTH    17 +22222222222222222222222A@  F SCHATTNER, GAIL    50 +2222222222222222222A22A11  M DOEPPNER, TOM    45 +222222222222222222222AB@@  F MCLOUGHLIN, BILLY     7 +222222222222222222@2B@BB@  M WRIGHT, BENJAMIN    16 +2222222222222222222A111@1  F BUFF, MARGE BABY    48 +22222222222222222A22B11@@  M CHAZELLE, BERNIE    25 +22222222222222222A2@B11@1  F SEILER, KAREN    59 +22222222222222222A2A11@B@  F CLAPP, LB    18 +22222222222222222A21@B1@@  M ERNST, RICHARD MAX The scalogram is that of Table 22.1, but with each observation marked as to whether it conforms with its expectation or not. Observations within 0.5 rating points of their expectation are deemed to be in their expected categories, and are reported with their category values, e.g., '1', '2', etc. These ratings support the overall inferential relationship between observations and measures. Observations more than 0.5 rating points away from their expectations, i.e., in a "wrong" category, are marked with a letter equivalent: 'A' = '0','B' = '1','C' = '2', etc. These contradict observation-to-measure inferences. The proportion of in- and out-of-category observations are reported by the COHERENCE statistics in Table 3.2. Table 22.3 Guttman scalogram of original response codes      GUTTMAN SCALOGRAM OF ORIGINAL RESPONSES:  KID |ACT      |1111112 1 221  121    22      |8920311251427634569784035      |-------------------------    2 +2222222222222222222222222  M ROSSNER, LAWRENCE F.   41 +2222222222222222222222212  F FATALE, NATASHA   34 +2222222222222222222222211  F PASTER, RUTH   17 +2222222222222222222222210  F SCHATTNER, GAIL   50 +2222222222222222222122111  M DOEPPNER, TOM   45 +2222222222222222222221200  F MCLOUGHLIN, BILLY    7 +2222222222222222220220220  M WRIGHT, BENJAMIN   16 +2222222222222222222111101  F BUFF, MARGE BABY   48 +2222222222222222212221100  M CHAZELLE, BERNIE   25 +2222222222222222212021101  F SEILER, KAREN   59 +2222222222222222212111020  F CLAPP, LB   18 +2222222222222222212102100  M ERNST, RICHARD MAX The observations are printed in order of person and item measures, with most able persons listed first, the easiest items printed on the left. This scalogram shows the original codes in the data file.

Interpreting a Scalogram. Example of Table 22.1 for Example0.txt.  A scalogram orders the persons from high measure to low measure as rows, and the items from low measure (easy) to high measure (hard) as columns. The green boxes show the probabilistic advance from responses in high categories on the easy items to responses in low categories on the hard items.

Top left corner: where the “more able” (more liking) children respond to the “easier” (to like) items. So we expect to see responses of “Like” (2). We do! Unexpected responses in this area influence the Outfit statistics more strongly.

Top right corner: (blue box) where the “most liking” children and the “hardest to like items”  meet - you can see some ratings of 1.

Bottom right corner: where “less able” (less liking) children respond to the “harder” (to like) items. So we expect to see responses of “Dislike” (0). But do we?? Something has gone wrong! There are 1’s and 2’s where we expected all 0’s. Unexpected responses in this area influence the Outfit statistics more strongly.

Diagonal transition zone: Between the red diagonals lies the transition zone where we expect 1’s. In this zone Infit is more sensitive to unexpected patterns of responses. More categories in the rating scale means a wider transition zone. Then the transition zone can be wider than the observed responses.

Example of Table 22.2. Five categories: 0,1,2,3,4. Categories in the wrong scores bands are shown as @ (=0), A (=1), B (=2), C (=3), D (=4). The 5 score bands have different colors here. Band 0 is yellow. Band 1 is green. Band 2 is blue. Band 3 is white. Band 4 is mauve.

Example of Table 22.3. Here is the Scalogram for Example 5, a computer-adaptive, multiple-choice test. The original responses are shown.

GUTTMAN SCALOGRAM OF ORIGINAL RESPONSES:

STUDENT |TOPIC

|  11  3  11 1 3212232212132425654421434145625 36555366356465464633654

|640215038189677748390992315641640517264579268221076889430372139553458

|---------------------------------------------------------------------

3 +                                     d   b     c    db   d   c b  cd   S   STA

6 +                              c          b     c    d     d  c    cd   S   CHU

27 +                           c  c  c             c   cbb  a dd c b  dd   S   ERI

4 +                              c     b     a d  cb c dd    d  b d  dc   S   CHE

9 +              d    c      a a cbc     c  ba b dca c db   dc bbdbb   c  S   MEL

25 +              c  b       d c   bc   a     a d  a  c dba  d   cbccbd c  S   DAN

24 +          a          d      ac      b     c d      c  b a    a         AP  SAR

12 +              c  b         c    c   b b     b   b a    cb  cc c        A   ALL

28 +                   c       c a bcc  b c acc d   b bc   b c bdcb     d  IH  GRE

21 + b       c b a     c  b     a  bc  bb  ab a db bbd      cc   b     b   AP  MIL

11 +   a  d  c b  cc  cbad  d  ca c   d   ca ba b ac    bac   bc  d c cc   S   CHR

17 +      d     d c    c      acac cac  b c a     a  b    c  c bc b ac ac  IH  FRA

7 +      d  c  d ccaaac d bcd ca    b cb c b  a  a a  a  ab   b    bb ac  IH  JAN

1 +              c    c      ab    ca   dc b       a  a     c    a     c  IM  CAT

20 +     bd    b   c b cad  cd  a        bac      b    a  b     c    b     IL  JAM

22 +  d       a d c  b   d  cdabcc bbc cbdb a     a dbac     c dc   d  a   IM  BAR

30 +      d   a  a cab cdd   d  d      da      c       d  c     c   db     IL  HOL

14 + b    d  c  db caa caa   da c   dcd  b c   a cd    d     c  c   d  b   IL  TAK

23 +      d  cab  dcaa cadbbbba a   c a db     c  b    a     c  c   ab  c  IL  MEI

26 +      d   a   cc b  ac  cdd b   a  d db a  d       b  d     d   cb  c  IL  MIT

15 +  d   d   a  a caba  dcbddc c      d b     b  a       c         bb     NH  MAR

13 +  d   d     d  c bac dc  bd      d dcd     d  a    d  d  c  b    b     NH  KEL

29 +b dbd  bdcabd  baaacbd  c d c     ab   a     dd          d    c  b  c  NH  RIC

8 +bbdadbd abaa acbcbccacbcadab   c   d cdab  a  d    a  a  c  c   cb     IL  ROB

16 +b da b bdccbbbcccbadaabba ccd   c ac bd a  a           b               NM  HEL

18 +b  a  a d  bca bc a   cccc  a     db   c   a  a       d         d      NH  JOE

10 +b badbdbcccadacbababcda cba a   a acd  a   d       a             b     NM  JON

19 +bbdad   dacbdb cabdbc  c ad     d ab b     c  a    b                   NM  THE

2 +bbda  a d aaaa  c c a   cbd       ab   a   d                    c      NM  KAT

5 +    aad a            ab           a  b       a                         NL  SMI

|---------------------------------------------------------------------

|  11  3  11 1 3212232212132425654421434145625 36555366356465464633654

|640215038189677748390992315641640517264579268221076889430372139553458

Example: To display Scalogram response strings on the person Tables 6, 17, 18,19.

1. Perform your standard Winsteps analysis.

2. Output Table 22, with a LINELENGTH= big enough for all observations to be on one line.

3. Save Table 22 to your Desktop (or wherever).

4. Open the Table 22 file in software that can do a rectangular copy (NotePad++, TextPad, Word, etc.)

5. Open your Winsteps data file using the same rectangular-copy software.

6. Rectangular copy the Scalogram immediately adjacent to the person labels.

7. Adjust Winsteps control NAMELENGTH= etc for the new data file format.

8. Save the control and data file(s)

9. Perform your revised Winsteps analysis.

10. Table 6 should now display the Scalogram as part of the person label.

Help for Winsteps Rasch Measurement Software: www.winsteps.com. Author: John Michael Linacre

For more information, contact info@winsteps.com or use the Contact Form

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Click here to ask a question or make a suggestion about Winsteps and Facets software.

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments, George Engelhard, Jr. & Stefanie Wind Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez
Winsteps Tutorials Facets Tutorials Rasch Discussion Groups

Coming Rasch-related Events
April 10-12, 2018, Tues.-Thurs. Rasch Conference: IOMW, New York, NY, www.iomw.org
April 13-17, 2018, Fri.-Tues. AERA, New York, NY, www.aera.net
May 22 - 24, 2018, Tues.-Thur. EALTA 2018 pre-conference workshop (Introduction to Rasch measurement using WINSTEPS and FACETS, Thomas Eckes & Frank Weiss-Motz), https://ealta2018.testdaf.de
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 27 - 29, 2018, Wed.-Fri. Measurement at the Crossroads: History, philosophy and sociology of measurement, Paris, France., https://measurement2018.sciencesconf.org
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 25 - July 27, 2018, Wed.-Fri. Pacific-Rim Objective Measurement Symposium (PROMS), (Preconference workshops July 23-24, 2018) Fudan University, Shanghai, China "Applying Rasch Measurement in Language Assessment and across the Human Sciences" www.promsociety.org
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Sept. 3 - 6, 2018, Mon.-Thurs. IMEKO World Congress, Belfast, Northern Ireland www.imeko2018.org
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

Our current URL is www.winsteps.com

Winsteps® is a registered trademark

 John "Mike" Linacre, author of Winsteps, and Jenny use and recommend eco-friendly, safe and effective wellness and beauty products such as skincare