Table 2 Multiple-choice distractor plot

(controlled by T2SELECT=, MRANGE=)

 

The codes for the response options (distractors) are located according to the measures corresponding to them. Each subtable is presented two ways: with the response code itself (or one of them if several would be in the same place), e.g., Table 2.1, and with the score corresponding to the option, e.g. Table 2.11 (numbered 10 subtables higher).

 

Table 2 for polytomous items.

 


 

Table 2.1: shows the most probable response on the latent variable. In this example, for item "al07", "a" (or any other incorrect option) is most probable up to 3.2 logits, when "d", the correct response, becomes most probable according to the Rasch model.

 

TABLE 2.1: MOST PROBABLE RESPONSE: MODE  (BETWEEN "0" AND "1" IS "0", ETC.) (ILLUSTRATED BY AN OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

a                                                  d    d   55* al07  newspaper

a                                                 c     c   64  sa01  magazine

......

b     a                                                 a   12  nm07  sign on wall

a     d                                                 d   10  nm05  public place

|------+------+------+------+------+------+------+------|  NUM   TOPIC

-4    -3     -2     -1      0      1      2      3      4

 

      1        11 1111 111 212 3 2 12   12 1     1      2  STUDENTS

      T            S           M           S            T

      0        10  20  30 40 50 60 70  80 90           99  PERCENTILE

 

M = Mean, the average of the person measures, S = One Standard Deviation from the mean, T = Two P.SDs. from the mean. Percentile is percentage below the specified position.

 

* after the item entry NUMber indicates that the item difficulty is anchored.

 

Table 2.11 is the same as Table 2.1, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.11: MOST PROBABLE RESPONSE: MODE  (BETWEEN "0" AND "1" IS "0", ETC.) (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

0                                                  1    1   55  al07  newspaper

0                                                 1     1   64  sa01  magazine

 


 

Table 2.2: shows the predicted average response on the latent variable. In this example, for item "al07", "a" (or any other incorrect option) is the predicted average response up to 3.2 logits, then "d", the correct response, becomes the average predictions. The ":" is at the transition from an average expected wrong response to an average expected "right" response, i.e., where the predicted average score on the item is 0.5, the Rasch-half-point thresholds. The "a" below "2" is positions where the expected average score on the item is 0.25. Similarly "d" would be repeated where the expected average score on the item is 0.75, according to the Rasch model.

 

TABLE 2.2 EXPECTED SCORE: MEAN  (":" INDICATES HALF-POINT THRESHOLD) (ILLUSTRATED BY AN OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

a                                          a       :    d   55  al07  newspaper

a                                         a       :     c   64  sa01  magazine

 

Table 2.12 is the same as Table 2.2, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.12 EXPECTED SCORE: MEAN  (":" INDICATES HALF-POINT THRESHOLD) (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

0                                          0       :    1   55  al07  newspaper

0                                         0       :     1   64  sa01  magazine

 


 

Table 2.3 shows the Rasch-Thurstonian thresholds = 50% cumulative probability points. The lower category ("a" and other wrong answers) has a greater than 50% probability of being observed up to 3.2 logits, when "d", the correct answer, has a higher than 50% probability.

 

TABLE 2.3 50% CUMULATIVE PROBABILITY (Rasch-Thurstonian THRESHOLD): MEDIAN (ILLUSTRATED BY AN OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

a                                                  d    d   55  al07  newspaper

a                                                 c     c   64  sa01  magazine

 

Table 2.13 is the same as Table 2.3, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.13 50% CUMULATIVE PROBABILITY (Rasch-Thurstonian THRESHOLD): MEDIAN (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

0                                                  1    1   55  al07  newspaper

0                                                 1     1   64  sa01  magazine

 


 

Table 2.4 shows the item difficulties (or more generally the Rasch-Andrich thresholds) coded by the option of the higher category. For item "al07" this is "d", the correct option.

 

TABLE 2.4 STRUCTURE MEASURES (RASCH-ANDRICH THRESHOLDS: equal-adjacent-probability thresholds) (ILLUSTRATED BY AN OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                                                  d    |   55  al07  newspaper

|                                                 c     |   64  sa01  magazine

 

Table 2.14 is the same as Table 2.4, the Rasch-Andrich thresholds, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.14 STRUCTURE MEASURES (RASCH-ANDRICH THRESHOLDS: equal-adjacent-probability thresholds) (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                                                  1    |   55  al07  newspaper

|                                                 1     |   64  sa01  magazine

 


 

Table 2.5 shows the average measures of persons choosing wrong distractors (illustrated by one of the wrong distractors, "a") and the average measures or persons choosing a correct distractor (illustrated by one of the correct distractors, "d").

 

TABLE 2.5 OBSERVED AVERAGE MEASURES FOR STUDENTS (scored) (ILLUSTRATED BY AN OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                                a                      d   55  al07  newspaper

|                                           a        c  |   64  sa01  magazine

 

Table 2.15 is the same as Table 2.5, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.15 OBSERVED AVERAGE MEASURES FOR STUDENTS (scored) (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                                0                      1   55  al07  newspaper

|                                           0        1  |   64  sa01  magazine

 


 

Table 2.6, shown first from the Diagnosis menu, shows the average measures from Table 14.3 of the persons choosing each distractor. "m" usually indicates the average measure of persons with missing data. Table 2.6 shows the average ability of the group of examinees who chose each option. Table 2.15 (above) shows the average ability of the people who got an item right and wrong. Table 2.5 (above again) has the right and wrong scoring illustrated with specific MCQ options. If there are more than one correct or incorrect option, only one of each is shown.

 

TABLE 2.6 OBSERVED AVERAGE MEASURES FOR STUDENTS (unscored) (BY OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                         m    ab     c                 d   55  al07  newspaper

|                          m                d        c  |   64  sa01  magazine

 Code for unidentified missing data: m

 

Table 2.16 is the same as Table 2.6, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.16 OBSERVED AVERAGE MEASURES FOR STUDENTS (unscored) (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                         m    00     0                 1   55  al07  newspaper

|                          m                0        1  |   64  sa01  magazine

 


 

Table 2.7 shows the measures that would be predicted to be observed for incorrect and correct responses if the persons responded exactly as the Rasch model predicts. "a" (an incorrect distractor) shows the average measure for persons in the sample who would be predicted to fail the item, and "d" (a correct distractor) shows the average measure for persons in the sample who would be predicted to succeed on the item.

 

TABLE 2.7 EXPECTED AVERAGE MEASURES FOR STUDENTS (scored) (ILLUSTRATED BY AN OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                                  a                   d|   55  al07  newspaper

|                                         a             c   64  sa01  magazine

 

Table 2.17 is the same as Table 2.7, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.17 EXPECTED AVERAGE MEASURES FOR STUDENTS (scored) (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

|                                  0                   1|   55  al07  newspaper

|                                         0             1   64  sa01  magazine


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou Journal of Applied Measurement
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events
May 17 - June 21, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden http://www.hkr.se/samc2024
June 21 - July 19, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark