﻿ Table 31.3 Differential person functioning DPF list

# Table 31.3 Differential person functioning DPF list

Top Up Down  A A

Table 31 supports the investigation of item bias, Differential Person Functioning (DPF), i.e., interactions between individual persons types of items. Specify DPF= for item classifying indicators in item labels. Person bias and DPF are the same thing.

Example output:

You want to examine person bias (DPF) between starting-blocks in Exam1.txt. You need a column in your Winsteps item label that has two (or more) item type codes.

Table 31.1 is best for pairwise comparisons, e.g., Positive vs. Negative items. Use Table 31.1 if you have two classes.

Table 31.2 or Table 31.3 are best for multiple comparisons, e.g., regions against the national average. Table 31.2 sorts by class then item. Table 31.3 sorts by item then class.

DPF class specification is: DPF=\$S1W2

--------------------------------------------------------------------------------------------------

| TAP       OBSERVATIONS    BASELINE       DPF     DPF     DPF   DPF  DPF        KID             |

| CLASS    COUNT AVERAGE EXPECT MEASURE   SCORE MEASURE   SIZE  S.E.   t   Prob. Number  Name    |

|------------------------------------------------------------------------------------------------|

| 1-          11     .18    .23   -2.94    -.05   -3.52   -.58  1.05  -.55 .5937      1 Adam    M|

| 1-          11     .36    .39    -.26    -.03    -.67   -.41  1.35  -.30 .7686      2 Anne    F|

This displays a list of the local difficulty/ability estimates underlying the paired DPF analysis. These can be plotted directly from the Plots menu.

DPF class specification identifies the columns containing DPF classifications, with DPF= set to \$S1W2 using the selection rules.

The DPF effects are shown ordered by CLASS within person (row of the data matrix).

TAP CLASS identifies the CLASS of items. KID is specified with ITEM=, e.g., the first CLASS is "1-"

OBSERVATIONS are what are seen in the data

COUNT is the number of observations of the classification used for DPF estimation, e.g., 11 "1-" items responses were made by person 1.

AVERAGE is the average observation on the classification, e.g., 0.18 is the average score class "1-' items by person 1.

COUNT * AVERAGE = total score of person on the item class.

BASELINE is the prediction without DPF

EXPECT is the expected value of the average observation when there is no DPF, e.g., 0.92 is the expected average for person 1 on item class "1-" without DPF.

MEASURE is the what the overall ABILITY measure would be without DPF, e.g., -2.94 is the overall person ability of person 1 as reported in Table 18.

DPF: Differential Person Functioning

DPF SCORE is the difference between the observed and the expected average observations, e.g., 0.92 - 0.89= -0.03

DPF MEASURE is the person ability for this item class, e.g., person 1 has a local ability of -3.52 for item CLASS "1-".

The average of DPF measures across CLASS for an item is not the BASELINE MEASURE because score-to-measure conversion is non-linear. ">" (maximum score), "<" (minimum score) indicate measures corresponding to extreme scores.

DPF SIZE is the difference between the DPF MEASURE for this class and the BASELINE measure ability, i.e., -3.93 - -4.40 = .48. Item 4 is .48 logits more difficult for class F than expected.

DPF S.E. is the approximate standard error of the difference, e.g., 0.89 logits

DPF t is an approximate Student's t-statistic test, estimated as DPF SIZE divided by the DPF S.E. with a little less than (COUNT-2) degrees of freedom.

Prob. is the probability of the t-value. This is approximate because of dependencies between the statistics underlying the computation.

Help for Winsteps Rasch Measurement Software: www.winsteps.com. Author: John Michael Linacre

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez
Winsteps Tutorials Facets Tutorials Rasch Discussion Groups

Coming Rasch-related Events
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
April 29, 2017, Sat., 16:35 to 18:05. NCME Presidents Invitational Symposium: a new book commemorating Ben Wright's life and career, 16:35 to 18:05, San Antonio, TX, www.ncme.org
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com