﻿ Dependency and unidimensionality - Repeated measures - Longitudinal studies

# Dependency and unidimensionality - Repeated measures - Longitudinal studies

There are three approaches to constructing repetition-bias-free Rasch measures of persons being re-measured.

1. The situations are such that the person being re-measured is substantively different from the original person. Any dependency between the pairs of measures of the persons is below the noise level caused by other activities. For instance, when measuring a child entering the educational system at age 6 and then measuring the child again at age 18, any specific dependency between the two measures will be at the noise level. All person records can be analyzed together.

2. The first of each person measurement is the benchmark. The persons are measured, and the item difficulties and responses structures estimated. For all subsequent time-points, the items are anchored (IAFILE=) at their values for the first time point, and similarly for the response structures (SAFILE=). Since the measurement framework is anchored, no dependency between the measurements biases the measurements. Since the analysis is anchored, all time-points can be analyzed together in one analysis.

3. All measurements of each person are equally important, but it is thought that local dependency between the measurements may bias the measurements or the findings. Then, randomly select the observations at one time-point for each person. Construct a data file with only these observations. Analyze this data set. The random set of person records are measured, and the item difficulties and responses structures estimated. For all other time-points, the items are anchored (IAFILE=) at these "random" values, and similarly for the response structures (SAFILE=). Since the measurement framework is anchored, no dependency between the measurements biases the measurements.  Since the analysis is anchored, all time-points can be analyzed together in one analysis.

Question: To calibrate item difficulty, I am using data from 75 subjects. Most of the subjects have been tested repeatedly, between two and 9 times each. The reason for this was that I assumed that by training and time (with natural development) the subjects ability was different between different testing situations. Now the referee has asked me to verify that "the requirement of local independence is not breached". How can I check this?

Unidimensionality can be violated in many different ways. If you run all known statistical tests to check for violations (even with your subjects tested only once), your data would undoubtedly fail some of them - (for technical details of some of these tests see Fischer & Molenaar, "Rasch Models", chapter 5.) Consequently, the question is not "are my data perfectly unidimensional" - because they aren't. The question becomes "Is the lack of unidimensionality in my data sufficiently large to threaten the validity of my results?"

Pre-Test - Post-Test dependency (or any two tests with the same persons)

1. Stack the data: all pre-test data records. Below them, all post-test data records, in the same sequence.

2. Rasch-analyze these data.

3. Output the IPMATRIX= of standardized residuals to Excel
4. For each item, correlate the pre-test standardized residuals with the post-test standardized residuals.

5. Noticeable positive correlations indicate dependency for those items between pre-test and post-test.

Imagine that you accidentally entered all your data twice. Then you know there is a lack of local independence. What would happen? Here is what happened when I did this with the dataset exam12lo.txt:

Data in once:

SUMMARY OF 35 MEASURED PERSONS

+-----------------------------------------------------------------------------+

|           RAW                          MODEL         INFIT        OUTFIT    |

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD |

|-----------------------------------------------------------------------------|

| MEAN      38.2      13.0        -.18     .32      1.01    -.1   1.02     .0 |

| P.SD      10.1        .0         .99     .06       .56    1.4    .57    1.3 |

| MAX.      54.0      13.0        1.44     .59      2.36    2.9   2.28    2.5 |

| MIN.      16.0      13.0       -2.92     .29       .23   -2.9    .24   -2.3 |

|-----------------------------------------------------------------------------|

| REAL RMSE    .36 TRUE SD     .92  SEPARATION  2.55  PERSON RELIABILITY  .87 |

|MODEL RMSE    .33 TRUE SD     .94  SEPARATION  2.85  PERSON RELIABILITY  .89 |

| S.E. OF PERSON MEAN = .17                                                   |

+-----------------------------------------------------------------------------+

PERSON RAW SCORE-TO-MEASURE CORRELATION = .99

CRONBACH ALPHA (KR-20) PERSON RAW SCORE RELIABILITY = .89

SUMMARY OF 13 MEASURED ITEMS

+-----------------------------------------------------------------------------+

|           RAW                          MODEL         INFIT        OUTFIT    |

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD |

|-----------------------------------------------------------------------------|

| MEAN     102.9      35.0         .00     .20      1.08    -.2   1.02    -.2 |

| P.SD      23.6        .0         .93     .03       .58    2.3    .53    2.0 |

| MAX.     145.0      35.0        2.45     .31      2.16    3.9   2.42    4.3 |

| MIN.      46.0      35.0       -1.65     .18       .31   -4.2    .39   -3.3 |

|-----------------------------------------------------------------------------|

| REAL RMSE    .24 TRUE SD     .90  SEPARATION  3.81  ITEM   RELIABILITY  .94 |

|MODEL RMSE    .20 TRUE SD     .91  SEPARATION  4.53  ITEM   RELIABILITY  .95 |

| S.E. OF ITEM MEAN = .27                                                     |

+-----------------------------------------------------------------------------+

Data in twice:

SUMMARY OF 70 MEASURED PERSONS

+-----------------------------------------------------------------------------+

|           RAW                          MODEL         INFIT        OUTFIT    |

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD |

|-----------------------------------------------------------------------------|

| MEAN      38.2      13.0        -.18     .32      1.01    -.1   1.02     .0 |

| P.SD      10.1        .0         .99     .06       .56    1.4    .57    1.3 |

| MAX.      54.0      13.0        1.44     .59      2.36    2.9   2.28    2.5 |

| MIN.      16.0      13.0       -2.92     .29       .23   -2.9    .24   -2.3 |

|-----------------------------------------------------------------------------|

| REAL RMSE    .36 TRUE SD     .92  SEPARATION  2.55  PERSON RELIABILITY  .87 |

|MODEL RMSE    .33 TRUE SD     .94  SEPARATION  2.85  PERSON RELIABILITY  .89 |

| S.E. OF PERSON MEAN = .12                                                   |

+-----------------------------------------------------------------------------+

PERSON RAW SCORE-TO-MEASURE CORRELATION = .99

CRONBACH ALPHA (KR-20) PERSON RAW SCORE RELIABILITY = .89

SUMMARY OF 13 MEASURED ITEMS

+-----------------------------------------------------------------------------+

|           RAW                          MODEL         INFIT        OUTFIT    |

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD |

|-----------------------------------------------------------------------------|

| MEAN     205.8      70.0         .00     .14      1.08    -.3   1.02    -.4 |

| P.SD      47.2        .0         .93     .02       .58    3.2    .53    2.9 |

| MAX.     290.0      70.0        2.45     .22      2.16    5.4   2.42    6.1 |

| MIN.      92.0      70.0       -1.65     .13       .31   -6.0    .39   -4.7 |

|-----------------------------------------------------------------------------|

| REAL RMSE    .17 TRUE SD     .92  SEPARATION  5.48  ITEM   RELIABILITY  .97 |

|MODEL RMSE    .14 TRUE SD     .92  SEPARATION  6.48  ITEM   RELIABILITY  .98 |

| S.E. OF ITEM MEAN = .27                                                     |

+-----------------------------------------------------------------------------+

There is almost no difference in the person report. Person reliability does not change merely because the sample size becomes larger. Person reliability changes when the person distribution changes.

The biggest impact the lack of local independence has in this situation is to make the item standard errors too small. Consequently you might report item results as statistically significant that aren't.

So, with your current data, you could adjust the size of the item standard errors to their biggest "worst case" size:

Compute k = number of observations in your data / number of observations if each person had only been tested once

Adjusted item standard error = reported item standard error * sqrt (k).

This would also affect item Reliability computations:

Adjusted item separation coefficient = reported item separation coefficient / sqrt(k)

Adjusted item Reliability (separation index) = Rel. / ( k + Rel. - Rel.*k) =TRUE Sep**2 + Adj. + Adj. Sep.**2)

The size of the item mean-square fit statistics does not change, but you would also need to adjust the size of the item t standardized fit statistics (if you use them). This is more complicated. It is probably easiest to read them off the plot from Rasch Measurement Transactions 17:1 shown below.

Look at your current item mean-square and significance. Find the point on the plot. Go down to the x-axis. Divide the value there by k. Go to the same mean-square value contour. The "worst case" lower statistical significance value is on the y-axis.

Another noticeable aspect of your current data could be that there are misfitting subjects who were tested 9 times, while fitting persons are tested only twice. This would introduce a small distortion into the measurement system. So, arrange all the Tables in fit order, and look at each end, do some subjects appear numerous times near the end of a Table? If so, drop out those subjects and compare item calibrations with and without those subjects. If there is no meaningful difference, then those subjects are merely at the ends of the probabilistic range predicted by the Rasch model.

Help for Winsteps Rasch Measurement Software: www.winsteps.com. Author: John Michael Linacre

For more information, contact info@winsteps.com or use the Contact Form

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Click here to ask a question or make a suggestion about Winsteps and Facets software.

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments, George Engelhard, Jr. & Stefanie Wind Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez
Winsteps Tutorials Facets Tutorials Rasch Discussion Groups

Coming Rasch-related Events
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
Jan. 22-24, 2018, Mon-Wed. In-person workshop: Rasch Measurement for Everybody en español (A. Tristan, Winsteps), San Luis Potosi, Mexico. www.ieia.com.mx
April 10-12, 2018, Tues.-Thurs. Rasch Conference: IOMW, New York, NY, www.iomw.org
April 13-17, 2018, Fri.-Tues. AERA, New York, NY, www.aera.net
May 22 - 24, 2018, Tues.-Thur. EALTA 2018 pre-conference workshop (Introduction to Rasch measurement using WINSTEPS and FACETS, Thomas Eckes & Frank Weiss-Motz), https://ealta2018.testdaf.de
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 27 - 29, 2018, Wed.-Fri. Measurement at the Crossroads: History, philosophy and sociology of measurement, Paris, France., https://measurement2018.sciencesconf.org
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 25 - July 27, 2018, Wed.-Fri. Pacific-Rim Objective Measurement Symposium (PROMS), (Preconference workshops July 23-24, 2018) Fudan University, Shanghai, China "Applying Rasch Measurement in Language Assessment and across the Human Sciences" www.promsociety.org
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Sept. 3 - 6, 2018, Mon.-Thurs. IMEKO World Congress, Belfast, Northern Ireland www.imeko2018.org
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

Our current URL is www.winsteps.com

Winsteps® is a registered trademark

Concerned about aches, pains, youthfulness? Mike and Jenny suggest Liquid Biocell