﻿ Weighting the data

# Weighting the data

There are 3 methods of weighting:

1) Models= model weight: Model = ?,?,..., R, model weight

2) Labels= element weight: element number = element label, anchor value, group number, element weight

3) Data= observation weight: R..,

These multiply to give a combined weight to each observation.

The true reliability of the measures is from the unweighted analysis. Weighting introduces an arbitrariness into the analysis. One solution is to adjust the weights to maintain the unweighted reliability = Ru. The reliability of the weighted analysis, using an initial set of weights, = Rw. We can then scale  the weights using the Spearman-Brown Prophecy Formula:  S = Ru * (1-Rw) / ((1-Ru)*Rw)). Multiply the initial set of weights by S. Then the weighted and unweighted reliabilities should be the same.

Weighting sub-tests: Example: Two Cases: A and B. Four aspects: Taste, Touch, Sound, Sight.

Case A Taste weight twice as important as the rest.

Case B Sound weight twice as important as the rest.

Labels =

1, Examinees

1-1000

*

2, Case

1=A

2=B

*

3, Aspect

1=Taste

2=Touch

3=Sound

4=Sight

*

Models=

?, 1, 1, MyScale, 2 ; Case A Taste weighted 2

?, 2, 3, MyScale, 2 ; Case B Sound weighted 2

?, ?, ?, MyScale, 1 ; everything else weighted 1

*

Rating scale = MyScale, R9, General ; this rating scale is the same for all models

If you want to keep the "reliabilities" and standard errors meaningful then adjust the weights:

Original total weights = 2 cases x 4 aspects = 8

New total weights = 2 + 2 + 6 = 10

Weight adjustment to maintain total weight is 8/10.

Models=

?, 1, 1, MyScale, 1.6 ; Case A Taste

?, 2, 3, MyScale, 1.6 ; Case B Sound

?, ?, ?, MyScale, 0.8 ; everything else

*

Replication of a data point: can be specified by R (or another replication character) and the number of replications, for instance:

R3,2,23,6,4 means that the value of 4 was observed in this context 3 times.

Fractional replication permits flexible observation-weighting:

R3.5,2,23,6,4 means that the value of 4 was observed in this context 3.5 times.

Weighting observations: We want to give some incorrect answers a smaller penalty than other incorrect answers. There are two ways to do this:

1) in the data:

3 facets + correct

2,3,4, 1

3 facets + incorrect

2,3,4, 0

3 facets + half-weight incorrect

R0.5, 2,3,4, 0

2) with a Models= specification

Models =

; 3 facets + dummy indicator facet + correct/incorrect

?,?,?,1,D,1   ; full weight

?,?,?,2,D,0.5   ; half weight

*

Labels=

....

*

4, Weighting, A

1 = Full weight, 0

2 = Half weight, 0

*

Data =

3 facets + indicator +correct

2,3,4, 1, 1

3 facets + indicator + incorrect

2,3,4, 1, 0

3 facets + indicator +half-weight incorrect

2,3,4,  2, 0

Help for Facets Rasch Measurement Software: www.winsteps.com Author: John Michael Linacre.

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments, George Engelhard, Jr. & Stefanie Wind Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez
Winsteps Tutorials Facets Tutorials Rasch Discussion Groups

Coming Rasch-related Events
April 10-12, 2018, Tues.-Thurs. Rasch Conference: IOMW, New York, NY, www.iomw.org
April 13-17, 2018, Fri.-Tues. AERA, New York, NY, www.aera.net
May 22 - 24, 2018, Tues.-Thur. EALTA 2018 pre-conference workshop (Introduction to Rasch measurement using WINSTEPS and FACETS, Thomas Eckes & Frank Weiss-Motz), https://ealta2018.testdaf.de
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 27 - 29, 2018, Wed.-Fri. Measurement at the Crossroads: History, philosophy and sociology of measurement, Paris, France., https://measurement2018.sciencesconf.org
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 25 - July 27, 2018, Wed.-Fri. Pacific-Rim Objective Measurement Symposium (PROMS), (Preconference workshops July 23-24, 2018) Fudan University, Shanghai, China "Applying Rasch Measurement in Language Assessment and across the Human Sciences" www.promsociety.org
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Sept. 3 - 6, 2018, Mon.-Thurs. IMEKO World Congress, Belfast, Northern Ireland www.imeko2018.org
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

Our current URL is www.winsteps.com